Download Free Acetylene Chemistry Book in PDF and EPUB Free Download. You can read online Acetylene Chemistry and write the review.

This comprehensive handbook presents the full potential of modern acetylene chemistry, from organic synthesis through materials science to bioorganic chemistry. K. Houk, H. Hopf, P. Stang, K. M. Nicholas, N. Schore, M. Regitz, K. C. Nicolaou, R. Gleiter, L. Scott, R. Grubbs, H. Iwamura, J. Moore, and F. Diederich - internationally renowned authors introduce the reader, in a didactically skilful manner, to the state-of-the-art in alkyne chemistry. Emphasis is placed on presenting carefully selected and instructive examples as well as essential references to the original literature. Special benefits: Each chapter is rounded off by useful experimental procedures.
Acetylenes are an important and valuable class of compounds in organic synthesis. This book expands on this historically well-established concept, while incorporating the many new developments that have widened the number of applications in this field. It remains the only handbook available that embodies all the important facets of acetylene chemistry. Following the first section on synthesis, the leading authors deal with advanced materials before turning to the properties and theory of acetylenes, while a final section looks at the biological aspects. With its range of experimental procedures, this book is a practical aid for both organic and organometallic chemists, as well as for materials scientists, biochemists, and industrial chemists.
This is the only up-to-date book on the market to focus on the synthesis of these compounds in this particularly suitable way. A team of excellent international authors guarantees high-quality content, covering such topics as monodisperse carbon-rich oligomers, molecular electronic wires, polyaromatic hydrocarbons, nonconjugated small molecules, nanotubes, fullerenes, polyynes, macrocycles, dendrimers, phenylenes and diamondoid structures. The result is a must-have for everyone working in this expanding and interdisciplinary field, including organic and polymer chemists, materials scientists, and chemists working in industry.
The book gives a complete overview on today's research, development and industrialization of fine chemicals from acetylene. The author provides a comprehensive methodology by covering derivatives from acetylene reacting with formaldehyde, alcohol, ketone, halogen and acetic acid. The book offers extensive and practical reference work for chemists and chemical engineers as well as university teachers and students.
Polyacetylene: Chemistry, Physics, and Material Science reviews the chemistry, physics, and material science of polyacetylene. Topics covered include polymerization and crystal structure of polyacetylene, isomerization, neutral defects, and solitons. Globular morphology and the effect of heat of polymerization on polyacetylene are also discussed, along with doping and chemical reactions of polyacetylene. This book is comprised of 12 chapters and begins with an introduction to a few basic principles of polymer chemistry and solid-state physics, followed by an overview of charge-transfer salts and conducting polymers other than polyacetylene and a historical background on polyacetylene and a general description of its properties. The next chapter gives a detailed treatment of polymerization, with particular reference to the mechanisms and kinetics of acetylene polymerization and direct determination of polyacetylene molecular weight by radioquenching. The remaining chapters focus on the crystal structures and morphology of undoped polyacetylenes; methods of isomerization; spectroscopic, physical, and mechanical properties of undoped polyacetylene; and various chemical reactions of polyacetylene and polymethylacetylene. The probable mechanisms of doping are proposed and theoretical models for polyacetylene are presented. The final chapter considers a few technical applications of polyacetylene. This monograph will be of interest to chemists, physicists, and polymer scientists and engineers.
Business Chemistry: How to Build and Sustain Thriving Businesses in the Chemical Industry is a concise text aimed at chemists, other natural scientists, and engineers who want to develop essential management skills. Written in an accessible style with the needs of managers in mind, this book provides an introduction to essential management theory, models, and practical tools relevant to the chemical industry and associated branches such as pharmaceuticals and consumer goods. Drawing on first-hand management experience and in-depth research projects, the authors of this book outline the key topics to build and sustain businesses in the chemical industry. The book addresses important topics such as strategy and new business development, describes global trends that shape chemical companies, and looks at recent issues such as business model innovation. Features of this practitioner-oriented book include: Eight chapters covering all the management topics relevant to chemists, other natural scientists and engineers. Chapters co-authored by experienced practitioners from companies such as Altana, A.T. Kearney, and Evonik Industries. Featured examples and cases from the chemical industry and associated branches throughout chapters to illustrate the practical relevance of the topics covered. Contemporary issues such as business model design, customer and supplier integration, and business co-operation.
This Brief presents for the first time a detailed historical overview of the development of acetylene polymers, beginning with the initial discovery of acetylene in 1836 and continuing up through the 2000 Nobel Prize in Chemistry. The polymerization of acetylene is most commonly associated with polyacetylene, which was found to be conductive when treated with oxidizing agents such as Br2 or I2 in the mid‐to‐late 1970s. In fact, under the right conditions, oxidized polyacetylenes can exhibit conductivities into the metallic regime, thus providing the first example of an organic polymer exhibiting metallic conductivity. As a consequence, the 2000 Nobel Prize in Chemistry was awarded to Hideki Shirakawa, Alan MacDiarmid, and Alan Heeger for this pioneering research, the award citation reading “for the discovery and development of electrically conductive polymers.” Because of this, most incorrectly view polyacetylene, as well as conducting polymers in general, to originate in the 1970s. In this work, the author examines the polymerization of acetylene from early thermal polymerization studies to the ultimate production of the fully conjugated polyacetylene. Although true polyacetylene was not successfully produced until the 1950s by Giulio Natta, the polymerization of acetylene dates back to 1866 with the work of Marcellin Berthelot. These initial efforts were continued by a range of scientists to produce a polymeric material collectively given the name cuprene in 1900 by Paul Sabatier. Between the initial cuprene studies and the production of true polyacetylene, two related materials were also studied, usually referred to as polyenes and polyvinylenes. Although both of these materials could be thought of as forms of polyacetylene, neither was actually generated from the direct polymerization of acetylene. Readers will gain insight into the fact that polyacetylene and conducting organic polymers have a much longer history than commonly believed and involved the work of a significant number of Nobel Laureates.