Download Free Ac Circuit Fundamentals Book in PDF and EPUB Free Download. You can read online Ac Circuit Fundamentals and write the review.

This introductory text covers basic electronics and the behavior of passive components, circuit analysis and systematic troubleshooting. The analytical methods used are strongly based on Ohm's and Kirchoff's Laws. Mathematics are used for analysis, but only after a solid, intuitive understanding of circuit or device operation has been established. With a heavy emphasis on critical thinking over rote memorization, and the coverage of state of the art technology, this text truly prepares students to use and apply the knowledge they acquire.
This study guide is designed for students taking courses in electrical circuit analysis. The textbook includes examples, questions, and exercises that will help electrical engineering students to review and sharpen their knowledge of the subject and enhance their performance in the classroom. Offering detailed solutions, multiple methods for solving problems, and clear explanations of concepts, this hands-on guide will improve student’s problem-solving skills and basic understanding of the topics covered in electric circuit analysis courses. Exercises cover a wide selection of basic and advanced questions and problems Categorizes and orders the problems based on difficulty level, hence suitable for both knowledgeable and under-prepared students Provides detailed and instructor-recommended solutions and methods, along with clear explanations Can be used along with the core textbooks in AC circuit analysis and advanced electrical circuit analysis
For courses in Electronics and Electricity Technology DC/AC Fundamentals: A Systems Approach takes a broader view of DC/AC circuits than most standard texts, providing relevance to basic theory by stressing applications of dc/ac circuits in actual systems.
This book is designed as an introductory course for undergraduate students, in Electrical and Electronic, Mechanical, Mechatronics, Chemical and Petroleum engineering, who need fundamental knowledge of electrical circuits. Worked out examples have been presented after discussing each theory. Practice problems have also been included to enrich the learning experience of the students and professionals. PSpice and Multisim software packages have been included for simulation of different electrical circuit parameters. A number of exercise problems have been included in the book to aid faculty members.
This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors’ primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers.
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
provides a better understanding of electrical engineering terms, concepts, principles, laws, analysis methods, solution strategies and computational techniques. includes a brief introduction to the NEC and the Arc Flash Codes. deals with electrical energy cost and tips on improvement of electrical energy intensity in industrial and commercial environment. discusses myriad battery options available in the market; their strengths, weaknesses, opportunities that lie ahead and potential threats, and how batteries compare with capacitors as energy storage devices.
The essential guide that combines power system fundamentals with the practical aspects of equipment design and operation in modern power systems Written by an experienced power engineer, AC Circuits and Power Systems in Practice offers a comprehensive guide that reviews power system fundamentals and network theorems while exploring the practical aspects of equipment design and application. The author covers a wide-range of topics including basic circuit theorems, phasor diagrams, per-unit quantities and symmetrical component theory, as well as active and reactive power and their effects on network stability, voltage support and voltage collapse. Magnetic circuits, reactor and transformer design are analyzed, as is the operation of step voltage regulators. In addition, detailed introductions are provided to earthing systems in LV and MV networks, the adverse effects of harmonics on power equipment and power system protection. Finally, European and American engineering standards are presented where appropriate throughout the text, to familiarize the reader with their use and application. This book is written as a practical power engineering text for engineering students and recent graduates. It contains more than 400 illustrations and is designed to provide the reader with a broad introduction to the subject and to facilitate further study. Many of the examples included come from industry and are not normally covered in undergraduate syllabi. They are provided to assist in bridging the gap between tertiary study and industrial practice, and to assist the professional development of recent graduates. The material presented is easy to follow and includes both mathematical and visual representations using phasor diagrams. Problems included at the end of most chapters are designed to walk the reader through practical applications of the associated theory.
"Alexander and Sadiku's sixth edition of Fundamentals of Electric Circuits continues in the spirit of its successful previous editions, with the objective of presenting circuit analysis in a manner that is clearer, more interesting, and easier to understand than other, more traditional texts. Students are introduced to the sound, six-step problem solving methodology in chapter one, and are consistently made to apply and practice these steps in practice problems and homework problems throughout the text."--Publisher's website.
Electronics explained in one volume, using both theoretical and practical applications. Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The 5th edition includes an additional chapter showing how a wide range of useful electronic applications can be developed in conjunction with the increasingly popular Arduino microcontroller, as well as a new section on batteries for use in electronic equipment and some additional/updated student assignments. The book's content is matched to the latest pre-degree level courses (from Level 2 up to, and including, Foundation Degree and HND), making this an invaluable reference text for all study levels, and its broad coverage is combined with practical case studies based in real-world engineering contexts. In addition, each chapter includes a practical investigation designed to reinforce learning and provide a basis for further practical work. A companion website at http://www.key2electronics.com offers the reader a set of spreadsheet design tools that can be used to simplify circuit calculations, as well as circuit models and templates that will enable virtual simulation of circuits in the book. These are accompanied by online self-test multiple choice questions for each chapter with automatic marking, to enable students to continually monitor their own progress and understanding. A bank of online questions for lecturers to set as assignments is also available.