Download Free Abstractions For Fault Tolerance In Distributed Systems Book in PDF and EPUB Free Download. You can read online Abstractions For Fault Tolerance In Distributed Systems and write the review.

Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. Considering the uncertainty created by asynchrony and process crash failures in the context of message-passing systems, the book focuses on the main abstractions that one has to understand and master in order to be able to produce software with guaranteed properties. These fundamental abstractions are communication abstractions that allow the processes to communicate consistently (namely the register abstraction and the reliable broadcast abstraction), and the consensus agreement abstractions that allows them to cooperate despite failures. As they give a precise meaning to the words "communicate" and "agree" despite asynchrony and failures, these abstractions allow distributed programs to be designed with properties that can be stated and proved. Impossibility results are associated with these abstractions. Hence, in order to circumvent these impossibilities, the book relies on the failure detector approach, and, consequently, that approach to fault-tolerance is central to the book. Table of Contents: List of Figures / The Atomic Register Abstraction / Implementing an Atomic Register in a Crash-Prone Asynchronous System / The Uniform Reliable Broadcast Abstraction / Uniform Reliable Broadcast Abstraction Despite Unreliable Channels / The Consensus Abstraction / Consensus Algorithms for Asynchronous Systems Enriched with Various Failure Detectors / Constructing Failure Detectors
Describes abstractions useful in fault-tolerant and distributed systems including agreement, order, failure detection, and stable sstorage.
This book presents the most important fault-tolerant distributed programming abstractions and their associated distributed algorithms, in particular in terms of reliable communication and agreement, which lie at the heart of nearly all distributed applications. These programming abstractions, distributed objects or services, allow software designers and programmers to cope with asynchrony and the most important types of failures such as process crashes, message losses, and malicious behaviors of computing entities, widely known under the term "Byzantine fault-tolerance". The author introduces these notions in an incremental manner, starting from a clear specification, followed by algorithms which are first described intuitively and then proved correct. The book also presents impossibility results in classic distributed computing models, along with strategies, mainly failure detectors and randomization, that allow us to enrich these models. In this sense, the book constitutes an introduction to the science of distributed computing, with applications in all domains of distributed systems, such as cloud computing and blockchains. Each chapter comes with exercises and bibliographic notes to help the reader approach, understand, and master the fascinating field of fault-tolerant distributed computing.
This book presents the most important fault-tolerant distributed programming abstractions and their associated distributed algorithms, in particular in terms of reliable communication and agreement, which lie at the heart of nearly all distributed applications. These programming abstractions, distributed objects or services, allow software designers and programmers to cope with asynchrony and the most important types of failures such as process crashes, message losses, and malicious behaviors of computing entities, widely known under the term "Byzantine fault-tolerance". The author introduces these notions in an incremental manner, starting from a clear specification, followed by algorithms which are first described intuitively and then proved correct. The book also presents impossibility results in classic distributed computing models, along with strategies, mainly failure detectors and randomization, that allow us to enrich these models. In this sense, the book constitutes an introduction to the science of distributed computing, with applications in all domains of distributed systems, such as cloud computing and blockchains. Each chapter comes with exercises and bibliographic notes to help the reader approach, understand, and master the fascinating field of fault-tolerant distributed computing.
Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. Considering the uncertainty created by asynchrony and process crash failures in the context of message-passing systems, the book focuses on the main abstractions that one has to understand and master in order to be able to produce software with guaranteed properties. These fundamental abstractions are communication abstractions that allow the processes to communicate consistently (namely the register abstraction and the reliable broadcast abstraction), and the consensus agreement abstractions that allows them to cooperate despite failures. As they give a precise meaning to the words "communicate" and "agree" despite asynchrony and failures, these abstractions allow distributed programs to be designed with properties that can be stated and proved. Impossibility results are associated with these abstractions. Hence, in order to circumvent these impossibilities, the book relies on the failure detector approach, and, consequently, that approach to fault-tolerance is central to the book. Table of Contents: List of Figures / The Atomic Register Abstraction / Implementing an Atomic Register in a Crash-Prone Asynchronous System / The Uniform Reliable Broadcast Abstraction / Uniform Reliable Broadcast Abstraction Despite Unreliable Channels / The Consensus Abstraction / Consensus Algorithms for Asynchronous Systems Enriched with Various Failure Detectors / Constructing Failure Detectors
Fault tolerance is an approach by which reliability of a computer system can be increased beyond what can be achieved by traditional methods. Comprehensive and self-contained, this book explores the information available on software supported fault tolerance techniques, with a focus on fault tolerance in distributed systems.
Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. A previous book Communication and Agreement Abstraction for Fault-tolerant Asynchronous Distributed Systems (published by Morgan & Claypool, 2010) was devoted to the problems created by crash failures in asynchronous message-passing systems. The present book focuses on the way to cope with the uncertainty created by process failures (crash, omission failures and Byzantine behavior) in synchronous message-passing systems (i.e., systems whose progress is governed by the passage of time). To that end, the book considers fundamental problems that distributed synchronous processes have to solve. These fundamental problems concern agreement among processes (if processes are unable to agree in one way or another in presence of failures, no non-trivial problem can be solved). They are consensus, interactive consistency, k-set agreement and non-blocking atomic commit. Being able to solve these basic problems efficiently with provable guarantees allows applications designers to give a precise meaning to the words "cooperate" and "agree" despite failures, and write distributed synchronous programs with properties that can be stated and proved. Hence, the aim of the book is to present a comprehensive view of agreement problems, algorithms that solve them and associated computability bounds in synchronous message-passing distributed systems. Table of Contents: List of Figures / Synchronous Model, Failure Models, and Agreement Problems / Consensus and Interactive Consistency in the Crash Failure Model / Expedite Decision in the Crash Failure Model / Simultaneous Consensus Despite Crash Failures / From Consensus to k-Set Agreement / Non-Blocking Atomic Commit in Presence of Crash Failures / k-Set Agreement Despite Omission Failures / Consensus Despite Byzantine Failures / Byzantine Consensus in Enriched Models
In architecting dependable systems, what is required to improve the overall system robustness is fault tolerance. Many methods have been proposed to this end, the solutions are usually considered late during the design and implementation phases of the software life-cycle (e.g., Java and Windows NT exception handling), thus reducing the effectiveness error and fault handling. Since the system design typically models only normal behaviour of the system while ignoring exceptional ones, the implementation of the system is unable to handle abnormal events. Consequently, the system may fail in unexpected ways due to faults.It has been argued that fault tolerance management during the entire life-cycle improves the overall system robustness and that different classes of threats need to be identified for and dealt with at each distinct phase of software development, depending on the abstraction level of the software system being modelled.This book builds on this trend and investigates how fault tolerance mechanisms can be applied when engineering a software system. In particular, it identifies the new problems arising in this area, introduces the new models to be applied at different abstraction levels, defines methodologies for model-driven engineering of such systems and outlines the new technologies and validation and verification environments supporting this.
Despite the availability, inherent parallelism, and potential fault tolerance of networked workstations and microcomputers, most programmers do not write distributed code. Those that do are often overwhelmed by the asynchrony, concurrency, and tricky failure behaviour inherent in such systems.
Real-time computer systems are very often subject to dependability requirements because of their application areas. Fly-by-wire airplane control systems, control of power plants, industrial process control systems and others are required to continue their function despite faults. Fault-tolerance and real-time requirements thus constitute a kind of natural combination in process control applications. Systematic fault-tolerance is based on redundancy, which is used to mask failures of individual components. The problem of replica determinism is thereby to ensure that replicated components show consistent behavior in the absence of faults. It might seem trivial that, given an identical sequence of inputs, replicated computer systems will produce consistent outputs. Unfortunately, this is not the case. The problem of replica non-determinism and the presentation of its possible solutions is the subject of Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism. The field of automotive electronics is an important application area of fault-tolerant real-time systems. Systems like anti-lock braking, engine control, active suspension or vehicle dynamics control have demanding real-time and fault-tolerance requirements. These requirements have to be met even in the presence of very limited resources since cost is extremely important. Because of its interesting properties Fault-Tolerant Real-Time Systems gives an introduction to the application area of automotive electronics. The requirements of automotive electronics are a topic of discussion in the remainder of this work and are used as a benchmark to evaluate solutions to the problem of replica determinism.