Download Free Abstract Algebra 2nd Ed Book in PDF and EPUB Free Download. You can read online Abstract Algebra 2nd Ed and write the review.

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal mapping properties, rather than by constructions whose technical details are irrelevant. Addresses Common Curricular Weaknesses In addition to standard introductory material on the subject, such as Lagrange's and Sylow's theorems in group theory, the text provides important specific illustrations of general theory, discussing in detail finite fields, cyclotomic polynomials, and cyclotomic fields. The book also focuses on broader background, including brief but representative discussions of naive set theory and equivalents of the axiom of choice, quadratic reciprocity, Dirichlet's theorem on primes in arithmetic progressions, and some basic complex analysis. Numerous worked examples and exercises throughout facilitate a thorough understanding of the material.
Accessible to junior and senior undergraduate students, this survey contains many examples, solved exercises, sets of problems, and parts of abstract algebra of use in many other areas of discrete mathematics. Although this is a mathematics book, the authors have made great efforts to address the needs of users employing the techniques discussed. Fully worked out computational examples are backed by more than 500 exercises throughout the 40 sections. This new edition includes a new chapter on cryptology, and an enlarged chapter on applications of groups, while an extensive chapter has been added to survey other applications not included in the first edition. The book assumes knowledge of the material covered in a course on linear algebra and, preferably, a first course in (abstract) algebra covering the basics of groups, rings, and fields.
This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' notes at the Department of Mathematics, National Chung Cheng University, it contains material sufficient for three semesters of study. It begins with a description of the algebraic structures of the ring of integers and the field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's theorem and Sylow's theorems follow as applications of group theory. The theory of rings and ideals forms the second part of this textbook, with the ring of integers, the polynomial rings and matrix rings as basic examples. Emphasis will be on factorization in a factorial domain. The final part of the book focuses on field extensions and Galois theory to illustrate the correspondence between Galois groups and splitting fields of separable polynomials.Three whole new chapters are added to this second edition. Group action is introduced to give a more in-depth discussion on Sylow's theorems. We also provide a formula in solving combinatorial problems as an application. We devote two chapters to module theory, which is a natural generalization of the theory of the vector spaces. Readers will see the similarity and subtle differences between the two. In particular, determinant is formally defined and its properties rigorously proved.The textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
This book provides a complete abstract algebra course, enabling instructors to select the topics for use in individual classes.
The new edition of Abstract Algebra: An Interactive Approach presents a hands-on and traditional approach to learning groups, rings, and fields. It then goes further to offer optional technology use to create opportunities for interactive learning and computer use. This new edition offers a more traditional approach offering additional topics to the primary syllabus placed after primary topics are covered. This creates a more natural flow to the order of the subjects presented. This edition is transformed by historical notes and better explanations of why topics are covered. This innovative textbook shows how students can better grasp difficult algebraic concepts through the use of computer programs. It encourages students to experiment with various applications of abstract algebra, thereby obtaining a real-world perspective of this area. Each chapter includes, corresponding Sage notebooks, traditional exercises, and several interactive computer problems that utilize Sage and Mathematica® to explore groups, rings, fields and additional topics. This text does not sacrifice mathematical rigor. It covers classical proofs, such as Abel’s theorem, as well as many topics not found in most standard introductory texts. The author explores semi-direct products, polycyclic groups, Rubik’s Cube®-like puzzles, and Wedderburn’s theorem. The author also incorporates problem sequences that allow students to delve into interesting topics, including Fermat’s two square theorem.
This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader's skill and progress. The book should be suitable for students in the third or fourth year of study at a North American university or in the second or third year at a university in Europe.
Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.