Download Free Abiotic Stresses In Crop Plants Book in PDF and EPUB Free Download. You can read online Abiotic Stresses In Crop Plants and write the review.

Over the past decade, our understanding of plant adaptation to environmental stress has grown considerably. This book focuses on stress caused by the inanimate components of the environment associated with climatic, edaphic and physiographic factors that substantially limit plant growth and survival. Categorically these are abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition. Another stress, herbicides, is covered in this book to highlight how plants are impacted by abiotic stress originating from anthropogenic sources. The book also addresses the high degree to which plant responses to quite diverse forms of environmental stress are interconnected, describing the ways in which the plant utilizes and integrates many common signals and subsequent pathways to cope with less favorable conditions. The book is directed at researchers and professionals in plant physiology, cell biology and molecular biology, in both the academic and industrial sectors.
Abiotic stress cause changes in soil-plant-atmosphere continuum and is responsible for reduced yield in several major crops. Therefore, the subject of abiotic stress response in plants - metabolism, productivity and sustainability - is gaining considerable significance in the contemporary world. Abiotic stress is an integral part of “climate change,” a complex phenomenon with a wide range of unpredictable impacts on the environment. Prolonged exposure to these abiotic stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to tolerate these stresses by upregulation of osmolytes, osmoprotectants, and enzymatic and non-enzymatic antioxidants, etc. This volume deals with abiotic stress-induced morphological and anatomical changes, abberations in metabolism, strategies and approaches to increase salt tolerance, managing the drought stress, sustainable fruit production and postharvest stress treatments, role of glutathione reductase, flavonoids as antioxidants in plants, the role of salicylic acid and trehalose in plants, stress-induced flowering. The role of soil organic matter in mineral nutrition and fatty acid profile in response to heavy metal stress are also dealt with. Proteomic markers for oxidative stress as a new tools for reactive oxygen species and photosynthesis research, abscisic acid signaling in plants are covered with chosen examples. Stress responsive genes and gene products including expressed proteins that are implicated in conferring tolerance to the plant are presented. Thus, this volume would provides the reader with a wide spectrum of information including key references and with a large number of illustrations and tables. Dr. Parvaiz is Assistant Professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad has published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant National Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.
Environmental insults such as extremes of temperature, extremes of water status, and deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to manipulate plant performance that is better suited to withstand these stresses. This book searches for possible answers to several basic questions related to plant responses towards abiotic stresses. Synthesizing developments in plant stress biology, the book offers strategies that can be used in breeding, including genomic, molecular, physiological, and biotechnological approaches that have the potential to develop resilient plants and improve crop productivity worldwide.
Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, “system biology” and “omics approaches” in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.
Abiotic Stress and Legumes: Tolerance and Management is the first book to focus on the ability of legume plants to adapt effectively to environmental challenges. Using the -omic approach, this book takes a targeted approach to understanding the methods and means of ensuring survival and maximizing the productivity of the legume plant by improving tolerance to environmental /abiotic stress factors including drought, temperature change, and other challenges. The book presents a comprehensive overview of the progress that has been made in identifying means of managing abiotic stress effects, specifically in legumes, including the development of several varieties which exhibit tolerance through high yield using transcriptomic, proteomic, metabolomic and ionomic approaches. Further, exogenous application of various stimulants such as plant hormones, nutrients, sugars, and polyamines has emerged as an alternative strategy to improve productivity under these environmental challenges. Abiotic Stress and Legumes: Tolerance and Management examines these emerging strategies and serves as an important resource for researchers, academicians and scientists, enhancing their knowledge and aiding further research. - Explores the progress made in managing abiotic stress, specifically with high yield legumes - Highlights the molecular mechanisms related to acclimation - Presents proven strategies and emerging approaches to guide additional research
This book includes twenty-one comprehensive chapters addressing various soil and crop management issues, including modern techniques in enhancing crop production in the era of climate change. There are a few case studies and experimental evidence about these production systems in specific locations. Particular focus is provided on the state-of-the-art of biotechnology, nanotechnology, and precision agriculture, as well as many other recent approaches in ensuring sustainable crop production. This book is useful for undergraduate and graduate students, teachers, and researchers, particularly in the fields of crop science, soil science, and agronomy.
Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance. - Provides comprehensive information for developing multiple stress-tolerant crop varieties - Includes in-depth physiological, biochemical, and molecular information associated with cross-tolerance - Includes contribution from world-leading cross-tolerance research group - Presents color images and diagrams for effective communication of key concepts
Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.
Plants are subjected to numerous environmental stresses, which can be classified into two broad areas: abiotic and biotic stresses. While the first is considered the damage done to an organism by other living organisms, the latter occurs as a result of a negative impact of non-living factors on the organisms. In this scenario, the current most accepted opinion of scientists is that both biotic and abiotic factors in nature and agroecosystems are affected by climate change, which may lead to significant crop yield decreases worldwide. We should take into consideration not only this environmental concern but also the fact that 20 years from now the earth's population will need 55% more food than it can produce now. Therefore, it is crucial to address such concerns and bring about possible solutions to future plant stress-related outcomes that might affect global agriculture. This book intends to provide the reader with a comprehensive overview of both biotic and abiotic stresses through 10 chapters that include case studies and literature reviews about these topics. There will be a particular focus on understanding the physiological, biochemical, and molecular changes observed in stressed plants as well as the mechanisms underlying stress tolerance in plants.
Despite significant progress in increasing agricultural production, meeting the changing dietary preferences and increasing food demands of future populations remains a significant challenge. Salinity, drought, water logging, high temperature and toxicity are abiotic stresses that affect the crop yield and production. Tolerance for stress is a important characteristic that plants need to have in order to survive. Identification of proper techniques at a proper time can make it easy for scientists to increase crop productivity and yield. In Engineering Tolerance in Crop Plants against Abiotic Stress we have discussed the possible stresses and their impact on crops and portrayed distinctive abiotic stress tolerance in response to different techniques that can improve the performance of crops. Features of the Book: Provide a state-of-the-art description of the physiological, biochemical, and molecular status of the understanding of abiotic stress in plants. Address factors that threaten future food production and provide potential solution to these factors. Designed to cater to the needs of the students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. New strategies for better crop productivity and yield. Understanding new techniques pointed out in this book will open the possibility of genetic engineering in crop plants with the concomitant improved stress tolerance.