Download Free A Vast Machine Book in PDF and EPUB Free Download. You can read online A Vast Machine and write the review.

The science behind global warming, and its history: how scientists learned to understand the atmosphere, to measure it, to trace its past, and to model its future. Global warming skeptics often fall back on the argument that the scientific case for global warming is all model predictions, nothing but simulation; they warn us that we need to wait for real data, “sound science.” In A Vast Machine Paul Edwards has news for these skeptics: without models, there are no data. Today, no collection of signals or observations—even from satellites, which can “see” the whole planet with a single instrument—becomes global in time and space without passing through a series of data models. Everything we know about the world's climate we know through models. Edwards offers an engaging and innovative history of how scientists learned to understand the atmosphere—to measure it, trace its past, and model its future.
If machine learning transforms the nature of knowledge, does it also transform the practice of critical thought? Machine learning—programming computers to learn from data—has spread across scientific disciplines, media, entertainment, and government. Medical research, autonomous vehicles, credit transaction processing, computer gaming, recommendation systems, finance, surveillance, and robotics use machine learning. Machine learning devices (sometimes understood as scientific models, sometimes as operational algorithms) anchor the field of data science. They have also become mundane mechanisms deeply embedded in a variety of systems and gadgets. In contexts from the everyday to the esoteric, machine learning is said to transform the nature of knowledge. In this book, Adrian Mackenzie investigates whether machine learning also transforms the practice of critical thinking. Mackenzie focuses on machine learners—either humans and machines or human-machine relations—situated among settings, data, and devices. The settings range from fMRI to Facebook; the data anything from cat images to DNA sequences; the devices include neural networks, support vector machines, and decision trees. He examines specific learning algorithms—writing code and writing about code—and develops an archaeology of operations that, following Foucault, views machine learning as a form of knowledge production and a strategy of power. Exploring layers of abstraction, data infrastructures, coding practices, diagrams, mathematical formalisms, and the social organization of machine learning, Mackenzie traces the mostly invisible architecture of one of the central zones of contemporary technological cultures. Mackenzie's account of machine learning locates places in which a sense of agency can take root. His archaeology of the operational formation of machine learning does not unearth the footprint of a strategic monolith but reveals the local tributaries of force that feed into the generalization and plurality of the field.
How science is opening up the mysteries of the heart, revealing the poetry in motion within the machine. Your heart is a miracle in motion, a marvel of construction unsurpassed by any human-made creation. It beats 100,000 times every day—if you were to live to 100, that would be more than 3 billion beats across your lifespan. Despite decades of effort in labs all over the world, we have not yet been able to replicate the heart’s perfect engineering. But, as Sian Harding shows us in The Exquisite Machine, new scientific developments are opening up the mysteries of the heart. And this explosion of new science—ultrafast imaging, gene editing, stem cells, artificial intelligence, and advanced sub-light microscopy—has crucial, real-world consequences for health and well-being. Harding—a world leader in cardiac research—explores the relation between the emotions and heart function, reporting that the heart not only responds to our emotions, it creates them as well. The condition known as Broken Heart Syndrome, for example, is a real disorder than can follow bereavement or stress. The Exquisite Machine describes the evolutionary forces that have shaped the heart’s response to damage, the astonishing rejuvenating power of stem cells, how we can avoid heart disease, and why it can be so hard to repair a damaged heart. It tells the stories of patients who have had the devastating experiences of a heart attack, chaotic heart rhythms, or stress-induced acute heart failure. And it describes how cutting-edge technologies are enabling experiments and clinical trials that will lead us to new solutions to the worldwide scourge of heart disease.
Incorporating historical, sociological, and philosophical approaches, Changing the Atmosphere presents detailed empirical studies of climate science and its uptake into public policy.
The book—companion to a PBS series—that proves humans are causing global warming and offers a path to the future. Since the discovery of fire, humans have been energy users and always will be. And this is a good thing-our mastery of energy is what separates us from the rest of the animal kingdom and has allowed us to be the dominant species on the planet. However, this mastery comes with a price: we are changing our environment in a profoundly negative way by heating it up. Using one engaging story after another, coupled with accessible scientific facts, world authority Richard B. Alley explores the fascinating history of energy use by humans over the centuries, gives a doubt-destroying proof that already-high levels of carbon dioxide are causing damaging global warming, and surveys the alternative energy options that are available to exploit right now. These new energy sources might well be the engines for economic growth in the twenty-first century.
The compelling and adventurous stories of seven pioneering scientists who were at the forefront of what we now call climate science. From the glaciers of the Alps to the towering cumulonimbus clouds of the Caribbean and the unexpectedly chaotic flows of the North Atlantic, Waters of the World is a tour through 150 years of the history of a significant but underappreciated idea: that the Earth has a global climate system made up of interconnected parts, constantly changing on all scales of both time and space. A prerequisite for the discovery of global warming and climate change, this idea was forged by scientists studying water in its myriad forms. This is their story. Linking the history of the planet with the lives of those who studied it, Sarah Dry follows the remarkable scientists who summited volcanic peaks to peer through an atmosphere’s worth of water vapor, cored mile-thick ice sheets to uncover the Earth’s ancient climate history, and flew inside storm clouds to understand how small changes in energy can produce both massive storms and the general circulation of the Earth’s atmosphere. Each toiled on his or her own corner of the planetary puzzle. Gradually, their cumulative discoveries coalesced into a unified working theory of our planet’s climate. We now call this field climate science, and in recent years it has provoked great passions, anxieties, and warnings. But no less than the object of its study, the science of water and climate is—and always has been—evolving. By revealing the complexity of this history, Waters of the World delivers a better understanding of our planet’s climate at a time when we need it the most.
From the acclaimed author of Tubes, a lively and surprising tour through the global network that predicts our weather, the people behind it, and what it reveals about our climate and our planet The weather is the foundation of our daily lives. It’s a staple of small talk, the app on our smartphones, and often the first thing we check each morning. Yet, behind all these humble interactions is the largest and most elaborate piece of infrastructure human beings have ever constructed—a triumph of both science and global cooperation. But what is the weather machine, and who created it? In The Weather Machine, Andrew Blum takes readers on a fascinating journey through the people, places, and tools of forecasting, exploring how the weather went from something we simply observed to something we could actually predict. As he travels across the planet, he visits some of the oldest and most important weather stations and watches the newest satellites blast off. He explores the dogged efforts of forecasters to create a supercomputer model of the atmosphere, while trying to grasp the ongoing relevance of TV weather forecasters. In the increasingly unpredictable world of climate change, correctly understanding the weather is vital. Written with the sharp wit and infectious curiosity Andrew Blum is known for, The Weather Machine pulls back the curtain on a universal part of our everyday lives, illuminating our changing relationships with technology, the planet, and our global community.
The science behind global warming, and its history: how scientists learned to understand the atmosphere, to measure it, to trace its past, and to model its future. Global warming skeptics often fall back on the argument that the scientific case for global warming is all model predictions, nothing but simulation; they warn us that we need to wait for real data, “sound science.” In A Vast Machine Paul Edwards has news for these skeptics: without models, there are no data. Today, no collection of signals or observations—even from satellites, which can “see” the whole planet with a single instrument—becomes global in time and space without passing through a series of data models. Everything we know about the world's climate we know through models. Edwards offers an engaging and innovative history of how scientists learned to understand the atmosphere—to measure it, trace its past, and model its future.
A guide to understanding the inner workings and outer limits of technology and why we should never assume that computers always get it right. In Artificial Unintelligence, Meredith Broussard argues that our collective enthusiasm for applying computer technology to every aspect of life has resulted in a tremendous amount of poorly designed systems. We are so eager to do everything digitally—hiring, driving, paying bills, even choosing romantic partners—that we have stopped demanding that our technology actually work. Broussard, a software developer and journalist, reminds us that there are fundamental limits to what we can (and should) do with technology. With this book, she offers a guide to understanding the inner workings and outer limits of technology—and issues a warning that we should never assume that computers always get things right. Making a case against technochauvinism—the belief that technology is always the solution—Broussard argues that it's just not true that social problems would inevitably retreat before a digitally enabled Utopia. To prove her point, she undertakes a series of adventures in computer programming. She goes for an alarming ride in a driverless car, concluding “the cyborg future is not coming any time soon”; uses artificial intelligence to investigate why students can't pass standardized tests; deploys machine learning to predict which passengers survived the Titanic disaster; and attempts to repair the U.S. campaign finance system by building AI software. If we understand the limits of what we can do with technology, Broussard tells us, we can make better choices about what we should do with it to make the world better for everyone.