Download Free A Topological Picturebook Book in PDF and EPUB Free Download. You can read online A Topological Picturebook and write the review.

Praise for George Francis's A Topological Picturebook: Bravo to Springer for reissuing this unique and beautiful book! It not only reminds the older generation of the pleasures of doing mathematics by hand, but also shows the new generation what ``hands on'' really means. - John Stillwell, University of San Francisco The Topological Picturebook has taught a whole generation of mathematicians to draw, to see, and to think. - Tony Robbin, artist and author of Shadows of Reality: The Fourth Dimension in Relativity, Cubism, and Modern Thought The classic reference for how to present topological information visually, full of amazing hand-drawn pictures of complicated surfaces. - John Sullivan, Technische Universitat Berlin A Topological Picturebook lets students see topology as the original discoverers conceived it: concrete and visual, free of the formalism that burdens conventional textbooks. - Jeffrey Weeks, author of The Shape of Space A Topological Picturebook is a visual feast for anyone concerned with mathematical images. Francis provides exquisite examples to build one's "visualization muscles". At the same time, he explains the underlying principles and design techniques for readers to create their own lucid drawings. - George W. Hart, Stony Brook University In this collection of narrative gems and intriguing hand-drawn pictures, George Francis demonstrates the chicken-and-egg relationship, in mathematics, of image and text. Since the book was first published, the case for pictures in mathematics has been won, and now it is time to reflect on their meaning. A Topological Picturebook remains indispensable. - Marjorie Senechal, Smith College and co-editor of the Mathematical Intelligencer
Praise for George Francis's A Topological Picturebook: Bravo to Springer for reissuing this unique and beautiful book! It not only reminds the older generation of the pleasures of doing mathematics by hand, but also shows the new generation what ``hands on'' really means. - John Stillwell, University of San Francisco The Topological Picturebook has taught a whole generation of mathematicians to draw, to see, and to think. - Tony Robbin, artist and author of Shadows of Reality: The Fourth Dimension in Relativity, Cubism, and Modern Thought The classic reference for how to present topological information visually, full of amazing hand-drawn pictures of complicated surfaces. - John Sullivan, Technische Universitat Berlin A Topological Picturebook lets students see topology as the original discoverers conceived it: concrete and visual, free of the formalism that burdens conventional textbooks. - Jeffrey Weeks, author of The Shape of Space A Topological Picturebook is a visual feast for anyone concerned with mathematical images. Francis provides exquisite examples to build one's "visualization muscles". At the same time, he explains the underlying principles and design techniques for readers to create their own lucid drawings. - George W. Hart, Stony Brook University In this collection of narrative gems and intriguing hand-drawn pictures, George Francis demonstrates the chicken-and-egg relationship, in mathematics, of image and text. Since the book was first published, the case for pictures in mathematics has been won, and now it is time to reflect on their meaning. A Topological Picturebook remains indispensable. - Marjorie Senechal, Smith College and co-editor of the Mathematical Intelligencer
How do you convey to your students, colleagues and friends some of the beauty of the kind of mathematics you are obsessed with? If you are a mathematician interested in finite or topological geometry and combinatorial designs, you could start by showing them some of the (400+) pictures in the "picture book". Pictures are what this book is all about; original pictures of everybody's favorite geometries such as configurations, projective planes and spaces, circle planes, generalized polygons, mathematical biplanes and other designs which capture much of the beauty, construction principles, particularities, substructures and interconnections of these geometries. The level of the text is suitable for advanced undergraduates and graduate students. Even if you are a mathematician who just wants some interesting reading you will enjoy the author's very original and comprehensive guided tour of small finite geometries and geometries on surfaces This guided tour includes lots of sterograms of the spatial models, games and puzzles and instructions on how to construct your own pictures and build some of the spatial models yourself.
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Covering agriculture, resources, energy, communication, transportation, manufacturing and waste, this volume explores all the major ecosystems of the modern industrial world, revealing what the structures are and why they're there and uncovering beauty in unexpected places. Photos.
The classic work on the evaluation of city form. What does the city's form actually mean to the people who live there? What can the city planner do to make the city's image more vivid and memorable to the city dweller? To answer these questions, Mr. Lynch, supported by studies of Los Angeles, Boston, and Jersey City, formulates a new criterion—imageability—and shows its potential value as a guide for the building and rebuilding of cities. The wide scope of this study leads to an original and vital method for the evaluation of city form. The architect, the planner, and certainly the city dweller will all want to read this book.
The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.
Topological analysis consists of those basic theorems of analysis which are essentially topological in character, developed and proved entirely by topological and pseudotopological methods. The objective of this volume is the promotion, encouragement, and stimulation of the interaction between topology and analysis-to the benefit of both. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
A clear and engaging discussion Written by a highly respected quantum physicist Puzzling phenomena made comprehensible Describes solutions to challenging quandries in physics
This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck).