Download Free A Theoretical And Experimental Study Of Oscillating Flow And Heat Transfer In Porous Media Book in PDF and EPUB Free Download. You can read online A Theoretical And Experimental Study Of Oscillating Flow And Heat Transfer In Porous Media and write the review.

The book is specially designed for postgraduate candidates and research scholars. We have assumed that the reader is conversant with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained. The book describes temperature variation, heat energy exchange, and fluid movement in porous media with the help of experimentation. The experiment is carried with different spherical balls, and water is used as fluid. The materials used as a porous media have different thermodynamic properties. The amount of heat energy exchange and thermal nonequilibrium is analyzed. The heat energy exchange is compared for different materials.
This book is a printed edition of the Special Issue "Heat Transfer Processes in Oscillatory Flow Conditions" that was published in Applied Sciences
This book focuses on the effects of the material, porosity, pore size and pore shape on flow behaviour and heat transfer in microscale porous media manufactured using a space holder method. It also describes a novel approach to studying flow behaviour in non-transparent materials such as porous metals via flow visualization in transparent media that mimic the porous structure. The book employs a combination of microparticle image velocimetry – a modern, advanced technique – and pressure drop measurement – a more traditional method – that makes the mechanistic study of several phenomena possible. It covers the identification of various flow regimes and their boundaries, velocity profiles on the microscale, the heat transfer coefficient under forced convection, and the correlation between flow behaviour on the pore scale and the convective heat transfer performance of the porous media. Understanding the fundamentals of porous flow, especially on the microscale, is critical for applications of porous media in heat exchangers, catalytic convertors, chemical reactors, filtration and oil extraction. Accordingly, this book offers a valuable resource for all researchers, graduate students and engineers working in the areas of porous flow and porous materials.
Nonprofit organizations are suffering from the continuing economic downturn. Donations are decreasing while demand for services is growing, forcing these organizations to be increasingly efficient and effective with their funds. This book introduces the reader to the basic concepts of project management. It provides approaches and templates to help nonprofit managers quickly implement practices to help them manage their limited resources, both financial and volunteer. The book also provides a tool to help the project team determine which practices are most appropriate. The book explores how social media and other technology tools can be used to assist in the management of time-sensitive projects and shows how project portfolio management can be a tool to assist in communications with boards of directors and other governing entities. The project portfolio is a tool that development office managers can easily implement and adopt to facilitate resource assignment. Finally, the book offers three case studies of nonprofit projects that went awry and shows how project management would have assisted.
Over the last three decades, advances in modeling flow, heat, and mass transfer through a porous medium have dramatically transformed engineering applications. Comprehensive and cohesive, Handbook of Porous Media, Second Edition presents a compilation of research related to heat and mass transfer including the development of practical applications
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more.