Download Free A Text Book Of Inorganic Chemistry Vol 11 Book in PDF and EPUB Free Download. You can read online A Text Book Of Inorganic Chemistry Vol 11 and write the review.

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.
Molybdenum is an element with an extremely rich and interesting chemistry having very versatile applications in various fields of human activity. It is used extensively in metallurgical applications. Because of their anti-wear properties, molybdenum compounds find wide applications as lubricants - particularly in extreme or hostile environmental situations. Many molybdates and heteropolymolybdates are white and therefore used as pigments. In addition, they are non-toxic and act as efficient corrosion inhibitors and smoke suppressants. Hydroprocessing of petroleum is one of the largest industries employing heterogeneous catalysts. Molybdenum catalysts have shown great promise in the liquefaction of coal and this may develop into one of its most important catalytic uses. The use of molybdenum compounds in homogeneous catalysis is also significant. Three important classes of molybdenum compounds in the solid state are reviewed, viz., oxides, sulphides and halides. The role of molybdenum in inorganic catalysis and enzymes receives prominent mention because of their impact on the progress of science and technology. Further biochemical and enzymic factors are discussed in separate chapters and their reaction to agriculture and animal husbandry. A new classification of covalent compounds which abandons the traditional oxidation state concept allows a powerful approach to the organisation of the complex and rich chemistry of molybdenum. Dramatic colour diagrams of abundances of molybdenum compounds provide broad insights into the important features and trends in the chemistry of molybdenum including reactivity and mechanism. The book is intended for use mainly as a research monograph by the many workers who may encounter molybdenum chemistry or who are looking for its application and potential uses in different technological fields. However, it will also serve as an advanced text for university lecturers and postgraduate students interested in inorganic, physical and industrial chemistry, chemical technology or biochemistry and biotechnology.
The Chemistry of Ruthenium is concerned with the chemistry of ruthenium, with emphasis on synthesis and structure. The discussion spans a wide range of fields, from coordination chemistry and organometallic chemistry to structural chemistry (of both molecular and extended lattices), electrochemistry and photochemistry, as well as kinetics and spectroscopy. Comprised of 15 chapters, this book begins with an introduction to the discovery and early history of ruthenium, along with its extraction and purification, isotopes, physical and chemical properties, and applications. The discussion then turns to the concept of oxidation state and a scheme for systematizing descriptive inorganic chemistry together with its applicability to ruthenium chemistry. Subsequent chapters focus on the chemistry of ruthenium(VIII), ruthenium(VII), ruthenium(VI), ruthenium(V), ruthenium(IV), ruthenium(III), ruthenium(II), ruthenium(I), and ruthenium(0). The book also considers ruthenium carbonyl clusters and nitrosyls before concluding with a review of the photophysics and photochemistry of tris(diimine)ruthenium(II) complexes. This monograph will be useful to students, practitioners, and researchers in the field of inorganic chemistry, as well as those who are interested in the chemistry of ruthenium.
This comprehensive series of volumes on inorganic chemistry provides inorganic chemists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Every volume reports recent progress with a significant, up-to-date selection of papers by internationally recognized researchers, complemented by detailed discussions and complete documentation. Each volume features a complete subject index and the series includes a cumulative index as well.
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
For the first time the discipline of modern inorganic chemistry has been systematized according to a plan constructed by a council of editorial advisors and consultants, among them three Nobel laureates (E.O. Fischer, H. Taube and G. Wilkinson). Rather than producing a collection of unrelated review articles, the series creates a framework which reflects the creative potential of this scientific discipline. Thus, it stimulates future development by identifiying areas which are fruitful for further research. The work is indexed in a unique way by a structured system which maximizes its usefulness to the reader. It augments the organization of the work by providing additional routes of access for specific compounds, reactions and other topics.
The Progress in Inorganic Chemistry series provides inorganic chemistry with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 52, Dithiolene Chemistry: Synthesis, Properties, and Applications continues this forum with a focus on dithiolene chemistry and a significant, up-to-date selection of papers by internationally recognized researchers. Dithiolene complexes have a remarkable set of properties, a fact which has made them the object of intense study for new materials and sensors.
This go-to text provides information and insight into physical inorganic chemistry essential to our understanding of chemical reactions on the molecular level. One of the only books in the field of inorganic physical chemistry with an emphasis on mechanisms, it features contributors at the forefront of research in their particular fields. This essential text discusses the latest developments in a number of topics currently among the most debated and researched in the world of chemistry, related to the future of solar energy, hydrogen energy, biorenewables, catalysis, environment, atmosphere, and human health.