Download Free A Study Of Macro And Micro Mixing In A Jet Stirred System Book in PDF and EPUB Free Download. You can read online A Study Of Macro And Micro Mixing In A Jet Stirred System and write the review.

The homogenization of single phase gases or liquids with chemical reactive components by mixing belongs to one of the oldest basic operations applied in chemical engineering. The mixing process is used as an essential step in nearly all processes of the chemical industry as well as the pharmaceutical and food ind- tries. Recent experimentally and theoretically based results from research work lead to a fairly good prediction of the velocity fields in differend kinds of mixers, where as predictions of simultaneously proceeding homogeneous chemical re- tions, are still not reliable in a similar way. Therefore the design of equipment for mixing processes is still derived from measurements of the so called “mixing time” which is related to the applied methods of measurement and the special - sign of the test equipment itself. The cooperation of 17 research groups was stimulated by improved modern methods for experimental research and visualization, for simulations and nume- cal calculations of mixing and chemical reactions in micro and macro scale of time and local coordinates. The research work was financed for a six years period within the recently finished Priority Program of the German Research Foundation (DFG) named “Analysis, modeling and numerical prediction of flow-mixig with and without chemical reactions (SPP 1141)”. The objective of the investigations was to improve the prediction of efficiencies and selectivities of chemical re- tions on macroscopic scale.
Dieses Handbuch beantwortet Ihnen alle Fragen zur Mischtechnik in der Industrie. Grundlagen, dargeboten in klarem, anschaulichem Stil, sind verknüpft mit Tipps von Experten für die Praxis und vielen Anwendungsbeispielen. Mitgeliefert wird eine CD-ROM mit Videosequenzen, die verschiedene Mischer in Aktion zeigen.
Turbulent Mixing and Chemical Reactions Jerzy Ba???dyga, Warsaw University of Technology, Poland John R. Bourne, Visiting Professor, University of Birmingham, UK and Emeritus Professor, ETH Zurich, Switzerland The way in which reagents are mixed can greatly influence the yield and range of products formed by fast, multiple chemical reactions. Understanding this phenomenon enables chemists to carry out reactions more selectively, make better use of raw materials and simplify product workup and separation. Turbulent Mixing and Chemical Reactions presents a balanced treatment of the connection between mixing and reaction. It contains theoretical aspects, experimental methods and expected results as well as worked examples to illustrate problem solving. This book will be of interest to all scientists involved in chemical engineering, physical chemistry, and synthetic chemists in the fine chemical and pharmaceuticals industry.
The original idea of IS is to send two solid-gas streams to impinge against each other at high velocity, enhancing transfer between phases. IS is classified into two kinds: Gas-continuous impinging streams (GIS) and Liquid-continuous ones (LIS). Impinging Streams describes fundamentals, major properties and application of IS, as a category of novel technologies in chemical engineering. Because of the universality of transfer phenomena, it is receiving widespread attention. This book represents the first book in this area for over 10 years and covers achievements and technologies.* describing clearly the properties of Gas-continuous and Liquid-continuous impinging streams* introducing new technical devices * includes a number of worked application cases, which are illustrated in detail
Batch processes are used to manufacture many fine organic chemicals, and as such they can be considered to underpin much of the modern chemical industry. Despite widespread use and a consequent huge contribution to wealth creation, batch processes have attracted limited attention outside the user industries. Batch chemicals processing uses a number of core techniques and technologies, such as scheduling and sequence control, agitation and batch filtration. The combination of these technologies with often complex chemistry, the multi-purpose nature of much of this type of plant, the distinctive safety and environmental issues, and a fast moving commercial environment makes the development of a successful batch process a considerable challenge for the chemist or engineer. The literature on the topics covered in this book is fragmented and often not easily accessible, so this handbook has been written to address this problem and to bring together design and process analysis methods in the core areas of batch process design. By combining the science and pragmatism required in the development of successful batch processes this new book provides answers to real problems in an accessible and concise way. Written by an international team of authors drawn from industry, consulting and academe, this book is an essential part of the library of any chemist, technologist or engineer working on the development of new or existing batch processes.
This book provides an insight into state-of-art developments in pulmonary drug delivery systems. It comprises several chapters covering a wide range of promising technologies and novel materials explored for developing effective pulmonary drug delivery systems. The initial book chapters elucidate role of thin film freezing, supercritical fluid technology, nano-in-micro particles system, crystal-engineered microstructures and porous particles in pulmonary drug delivery. The subsequent book chapters elaborate on various functional excipients such as chitosan, cyclodextrins, and Vitamin E-TPGS to attain local and systemic therapeutic action. There are book chapters focused on diverse novel carrier systems such as hydrogels, quantum dots, metal-organic framework, and prodrug approach. Additionally, book also contains chapters, exclusively dedicated to biologicals and numerical simulation in pulmonary therapeutics. The book chapters follow a sequential order, beginning with the pulmonary relevance of technology or polymeric materials, carrier synthesis schemes, current technical state-of-art, along with clinical, industrial, and regulatory aspects. Each chapter contains a future perspective section that will systematically reflect the current state of advances in pulmonary drug delivery. It also offers a practical basis for audience to understand the design and function of the delivery systems for better therapeutic outcomes. The book provides balanced views by considering the investigations from various scientific domains and industrial knowledge. Briefly, this book aims to collect, analyse, and bring together the latest developments in pulmonary drug delivery with more focus on materials and technologies. Indeed, this book is a valuable source for readers and researchers who wish to learn more about the advances in pulmonary drug delivery systems.