Download Free A Students Guide To Atomic Physics Book in PDF and EPUB Free Download. You can read online A Students Guide To Atomic Physics and write the review.

A concise overview of the fundamental concepts and applications of atomic physics for students including examples, problems, and diagrams of key concepts.
A clear guide to the key concepts and mathematical techniques underlying the Schrödinger equation, including homework problems and fully worked solutions.
This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.
This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimental basis of the subject, especially in the later chapters. It includes ample tutorial material (examples, illustrations, chapter summaries, graded problem sets).
Striving to explore the subject in as simple a manner as possible, this book helps readers understand the elusive concept of entropy. Innovative aspects of the book include the construction of statistical entropy from desired properties, the derivation of the entropy of classical systems from purely classical assumptions, and a statistical thermodynamics approach to the ideal Fermi and ideal Bose gases. Derivations are worked through step-by-step and important applications are highlighted in over 20 worked examples. Around 50 end-of-chapter exercises test readers' understanding. The book also features a glossary giving definitions for all essential terms, a time line showing important developments, and list of books for further study. It is an ideal supplement to undergraduate courses in physics, engineering, chemistry and mathematics.
An accessible guide to analytical mechanics, using intuitive examples to illustrate the underlying mathematics, helping students formulate, solve and interpret problems in mechanics.
This concise and accessible book provides a detailed introduction to the fundamental principles of atomic physics at an undergraduate level. Concepts are explained in an intuitive way and the book assumes only a basic knowledge of quantum mechanics and electromagnetism. With a compact format specifically designed for students, the first part of the book covers the key principles of the subject, including the quantum theory of the hydrogen atom, radiative transitions, the shell model of multi-electron atoms, spin-orbit coupling, and the effects of external fields. The second part provides an introduction to the four key applications of atomic physics: lasers, cold atoms, solid-state spectroscopy and astrophysics. This highly pedagogical text includes worked examples and end of chapter problems to allow students to test their knowledge, as well as numerous diagrams of key concepts, making it perfect for undergraduate students looking for a succinct primer on the concepts and applications of atomic physics.
“French Nobel Laureate Claude Cohen-Tannoudji is second to none in his understanding of the modern theory and application of atom-photon interactions. He is also known for his lucid and accessible writing style … Advances in Atomic Physics is an impressive and wonderful-to-read reference text … Certainly researchers in the fields of atom-photon interactions and atom traps will want it as a reference on their bookshelves … A selection of chapters may be of benefit to students: the early chapters for those entering the field, the later chapters for those already doing atom-laser PhD thesis work.”Physics TodayThis book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.
This introduction to dimensional analysis covers the methods, history and formalisation of the field. Utilising topics including mechanics, hydro- and electrodynamics, and thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis, making it perfect for students on introductory courses in physics, engineering and mathematics.
Vectors, tensors and functions -- Manifolds, vectors and differentiation -- Energy, momentum and Einstein's equations