Download Free A Quick Introduction To Complex Analysis Book in PDF and EPUB Free Download. You can read online A Quick Introduction To Complex Analysis and write the review.

This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter. This is the latest addition to the growing list of Oxford undergraduate textbooks in mathematics, which includes: Biggs: Discrete Mathematics 2nd Edition, Cameron: Introduction to Algebra, Needham: Visual Complex Analysis, Kaye and Wilson: Linear Algebra, Acheson: Elementary Fluid Dynamics, Jordan and Smith: Nonlinear Ordinary Differential Equations, Smith: Numerical Solution of Partial Differential Equations, Wilson: Graphs, Colourings and the Four-Colour Theorem, Bishop: Neural Networks for Pattern Recognition, Gelman and Nolan: Teaching Statistics.
This book gives a comprehensive introduction to complex analysis in several variables. While it focusses on a number of topics in complex analysis rather than trying to cover as much material as possible, references to other parts of mathematics such as functional analysis or algebras are made to help broaden the view and the understanding of the chosen topics. A major focus are extension phenomena alien to the one-dimensional theory, which are expressed in the famous Hartog's Kugelsatz, the theorem of Cartan-Thullen, and Bochner's theorem. The book aims primarily at students starting to work in the field of complex analysis in several variables and instructors preparing a course. To that end, a lot of examples and supporting exercises are provided throughout the text. This second edition includes hints and suggestions for the solution of the provided exercises, with various degrees of support.
This textbook, based on lectures given by the authors, presents the elements of the theory of functions in a precise fashion. This introduction is ideal for the third or fourth year of undergraduate study and for graduate students learning complex analysis. Over 300 exercises offer important insight into the subject.
Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.
Recent decades have seen profound changes in the way we understand complex analysis. This new work presents a much-needed modern treatment of the subject, incorporating the latest developments and providing a rigorous yet accessible introduction to the concepts and proofs of this fundamental branch of mathematics. With its thorough review of the prerequisites and well-balanced mix of theory and practice, this book will appeal both to readers interested in pursuing advanced topics as well as those wishing to explore the many applications of complex analysis to engineering and the physical sciences. * Reviews the necessary calculus, bringing readers quickly up to speed on the material * Illustrates the theory, techniques, and reasoning through the use of short proofs and many examples * Demystifies complex versus real differentiability for functions from the plane to the plane * Develops Cauchy's Theorem, presenting the powerful and easy-to-use winding-number version * Contains over 100 sophisticated graphics to provide helpful examples and reinforce important concepts
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
The aim of the book is to give a smooth analytic continuation from calculus to complex analysis by way of plenty of practical examples and worked-out exercises. The scope ranges from applications in calculus to complex analysis in two different levels.If the reader is in a hurry, he can browse the quickest introduction to complex analysis at the beginning of Chapter 1, which explains the very basics of the theory in an extremely user-friendly way. Those who want to do self-study on complex analysis can concentrate on Chapter 1 in which the two mainstreams of the theory — the power series method due to Weierstrass and the integration method due to Cauchy — are presented in a very concrete way with rich examples. Readers who want to learn more about applied calculus can refer to Chapter 2, where numerous practical applications are provided. They will master the art of problem solving by following the step by step guidance given in the worked-out examples.This book helps the reader to acquire fundamental skills of understanding complex analysis and its applications. It also gives a smooth introduction to Fourier analysis as well as a quick prelude to thermodynamics and fluid mechanics, information theory, and control theory. One of the main features of the book is that it presents different approaches to the same topic that aids the reader to gain a deeper understanding of the subject.