Download Free A New Paradigm Of Knowledge Engineering By Soft Computing Book in PDF and EPUB Free Download. You can read online A New Paradigm Of Knowledge Engineering By Soft Computing and write the review.

Soft computing (SC) consists of several computing paradigms, including neural networks, fuzzy set theory, approximate reasoning, and derivative-free optimization methods such as genetic algorithms. The integration of those constituent methodologies forms the core of SC. In addition, the synergy allows SC to incorporate human knowledge effectively, deal with imprecision and uncertainty, and learn to adapt to unknown or changing environments for better performance. Together with other modern technologies, SC and its applications exert unprecedented influence on intelligent systems that mimic human intelligence in thinking, learning, reasoning, and many other aspects.Knowledge engineering (KE), which deals with knowledge acquisition, representation, validation, inferencing, explanation, and maintenance, has made significant progress recently, owing to the indefatigable efforts of researchers. Undoubtedly, the hot topics of data mining and knowledge/data discovery have injected new life into the classical AI world.This book tells readers how KE has been influenced and extended by SC and how SC will be helpful in pushing the frontier of KE further. It is intended for researchers and graduate students to use as a reference in the study of knowledge engineering and intelligent systems. The reader is expected to have a basic knowledge of fuzzy logic, neural networks, genetic algorithms, and knowledge-based systems.
Pattern recognition (PR) consists of three important tasks: feature analysis, clustering and classification. Image analysis can also be viewed as a PR task. Feature analysis is a very important step in designing any useful PR system because its effectiveness depends heavily on the set of features used to realise the system. A distinguishing feature of this volume is that it deals with all three aspects of PR, namely feature analysis, clustering and classifier design. It also encompasses image processing methodologies and image retrieval with subjective information. The other interesting aspect of the volume is that it covers all three major facets of soft computing: fuzzy logic, neural networks and evolutionary computing. Contents: Dimensionality Reduction Techniques for Interactive Visualization, Exploratory Data Analysis, and Classification (A KAnig); Feature Selection by Artificial Neural Network for Pattern Classification (B Chakraborty); A New Clustering with Estimation of Cluster Number Based on Genetic Algorithm (K Imai et al.); Minimizing the Measurement Cost in the Classification of New Samples by Neural-Network-Based Classifiers (H Ishibuchi & M Nii); Extraction of Fuzzy Rules from Numerical Data for Classifiers (N R Pal & A Sarkar); A Texture Image Segmentation Method Using Neural Networks and Binary Features (J Zhang & S Oe); Image Retrieval System Based on Subjective Information (K Yoshida et al.); and other papers. Readership: Graduate students, researchers and lecturers in pattern recognition and image analysis."
Pattern recognition (PR) consists of three important tasks: feature analysis, clustering and classification. Image analysis can also be viewed as a PR task. Feature analysis is a very important step in designing any useful PR system because its effectiveness depends heavily on the set of features used to realise the system.A distinguishing feature of this volume is that it deals with all three aspects of PR, namely feature analysis, clustering and classifier design. It also encompasses image processing methodologies and image retrieval with subjective information. The other interesting aspect of the volume is that it covers all three major facets of soft computing: fuzzy logic, neural networks and evolutionary computing.
Soft computing techniques have reached a significant level of recognition and - ceptance from both the academic and industrial communities. The papers collected in this volume illustrate the depth of the current theoretical research trends and the breadth of the application areas in which soft computing methods are making c- tributions. This volume consists of forty six selected papers presented at the Fourth Inter- tional Conference on Recent Advances in Soft Computing, which was held in N- th th tingham, United Kingdom on 12 and 13 December 2002 at Nottingham Trent University. This volume is organized in five parts. The first four parts address mainly the f- damental and theoretical advances in soft computing, namely Artificial Neural Networks, Evolutionary Computing, Fuzzy Systems and Hybrid Systems. The fifth part of this volume presents papers that deal with practical issues and ind- trial applications of soft computing techniques. We would like to express our sincere gratitude to all the authors who submitted contributions for inclusion. We are also indebted to Janusz Kacprzyk for his - vices related to this volume. We hope you find the volume an interesting refl- tion of current theoretical and application based soft computing research.
Search engines, with Google at the top, have become the most heavily used online service, with millions of searches performed every day and many remarkable capabilities. Soft Computing for Information Processing and Analysis includes reports from the front of soft computing in the internet industry and imparts knowledge and understanding of the significance of the field's accomplishments, new developments and future directions. This carefully edited book has evolved from presentations made by the participants of a meeting entitled "Fuzzy Logic and the Internet: Enhancing the Power of the Internet", organized by the Berkeley Initiative in Soft Computing (BISC), University of California, Berkeley. It addresses the important topics of modern search engines such as fuzzy query, decision analysis and support systems, including articles about topics such as Web Intelligence, World Knowledge and Fuzzy Logic (by Lotfi A. Zadeh), perception based information processing, or web intelligence.
This book presents worldwide outstanding research and recent progress in the applications of neural networks, fuzzy logic, chaos, independent component analysis, etc to fields related to speech recognition enhancement, supervised Fourier demixing noise elimination, acoustic databases, the human hearing system, cancer detection, image processing, and visual communications.
Soft computing, as an engineering science, and statistics, as a classical branch of mathematics, emphasize different aspects of data analysis. Soft computing focuses on obtaining working solutions quickly, accepting approximations and unconventional approaches. Its strength lies in its flexibility to create models that suit the needs arising in applications. In addition, it emphasizes the need for intuitive and interpretable models, which are tolerant to imprecision and uncertainty. Statistics is more rigorous and focuses on establishing objective conclusions based on experimental data by analyzing the possible situations and their (relative) likelihood. It emphasizes the need for mathematical methods and tools to assess solutions and guarantee performance. Combining the two fields enhances the robustness and generalizability of data analysis methods, while preserving the flexibility to solve real-world problems efficiently and intuitively.
"This book offers widespread knowledge on modern organizations and the complications of the current globalized computing environment"--Provided by publisher.
In recent years, mathematical techniques applied to novel disciplines within the science and engineering have experienced extraordinary growth. Advanced Mathematical Techniques in Science and Engineering focusses on a detailed range of mathematics applied within various fields of science and engineering for different tasks. Topics of focus include:- Analysis of Consensus-Building Time in Social Groups- Modeling of intersystem accidents in critical infrastructure systems- Stochastic approaches to analysis and modeling of multi-sources and big data- Performance evaluation of computational DoS attack on access point in Wireless LANs- Ranking methods for decision-making under uncertainty- Understanding time delay based Modeling & Diffusion of technological products- Role of soft computing in science and engineering- Complex system reliability analysis and optimization- Tree growth models in forest ecosystems modellingThis research book can be used as a reference for students in a final year undergraduate engineering course, such as mechanical, mechatronics, industrial, computer science, information technology, etc. Furthermore, the book can serve as a valuable reference for academics, engineers and researchers in these and related subject areas.
This volume presents the set of final accepted papers for the tenth edition of the IWANN conference “International Work-Conference on Artificial neural Networks” held in Salamanca (Spain) during June 10–12, 2009. IWANN is a biennial conference focusing on the foundations, theory, models and applications of systems inspired by nature (mainly, neural networks, evolutionary and soft-computing systems). Since the first edition in Granada (LNCS 540, 1991), the conference has evolved and matured. The list of topics in the successive Call for - pers has also evolved, resulting in the following list for the present edition: 1. Mathematical and theoretical methods in computational intelligence. C- plex and social systems. Evolutionary and genetic algorithms. Fuzzy logic. Mathematics for neural networks. RBF structures. Self-organizing networks and methods. Support vector machines. 2. Neurocomputational formulations. Single-neuron modelling. Perceptual m- elling. System-level neural modelling. Spiking neurons. Models of biological learning. 3. Learning and adaptation. Adaptive systems. Imitation learning. Reconfig- able systems. Supervised, non-supervised, reinforcement and statistical al- rithms. 4. Emulation of cognitive functions. Decision making. Multi-agent systems. S- sor mesh. Natural language. Pattern recognition. Perceptual and motor functions (visual, auditory, tactile, virtual reality, etc.). Robotics. Planning motor control. 5. Bio-inspired systems and neuro-engineering. Embedded intelligent systems. Evolvable computing. Evolving hardware. Microelectronics for neural, fuzzy and bio-inspired systems. Neural prostheses. Retinomorphic systems. Bra- computer interfaces (BCI). Nanosystems. Nanocognitive systems.