Download Free A Logical Foundation For Potentialist Set Theory Book in PDF and EPUB Free Download. You can read online A Logical Foundation For Potentialist Set Theory and write the review.

In many ways set theory lies at the heart of modern mathematics, and it does powerful work both philosophical and mathematical – as a foundation for the subject. However, certain philosophical problems raise serious doubts about our acceptance of the axioms of set theory. In a detailed and original reassessment of these axioms, Sharon Berry uses a potentialist (as opposed to actualist) approach to develop a unified determinate conception of set-theoretic truth that vindicates many of our intuitive expectations regarding set theory. Berry further defends her approach against a number of possible objections, and she shows how a notion of logical possibility that is useful in formulating Potentialist set theory connects in important ways with philosophy of language, metametaphysics and philosophy of science. Her book will appeal to readers with interests in the philosophy of set theory, modal logic, and the role of mathematics in the sciences.
A new approach to the standard axioms of set theory, relating the theory to the philosophy of science and metametaphysics.
"Studies in Logic and the Foundations of Mathematics, Volume 102: Set Theory: An Introduction to Independence Proofs offers an introduction to relative consistency proofs in axiomatic set theory, including combinatorics, sets, trees, and forcing. The book first tackles the foundations of set theory and infinitary combinatorics. Discussions focus on the Suslin problem, Martin's axiom, almost disjoint and quasi-disjoint sets, trees, extensionality and comprehension, relations, functions, and well-ordering, ordinals, cardinals, and real numbers. The manuscript then ponders on well-founded sets and easy consistency proofs, including relativization, absoluteness, reflection theorems, properties of well-founded sets, and induction and recursion on well-founded relations. The publication examines constructible sets, forcing, and iterated forcing. Topics include Easton forcing, general iterated forcing, Cohen model, forcing with partial functions of larger cardinality, forcing with finite partial functions, and general extensions. The manuscript is a dependable source of information for mathematicians and researchers interested in set theory" -- Provided by publisher.
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
Modality - the question of what is possible and what is necessary - is a fundamental area of philosophy and philosophical research. The Routledge Handbook of Modality is an outstanding reference source to the key topics, problems and debates in this exciting subject and is the first collection of its kind. Comprising thirty-five chapters by a team of international contributors the Handbook is divided into seven clear parts: worlds and modality essentialism, ontological dependence, and modality modal anti-realism epistemology of modality modality in science modality in logic and mathematics modality in the history of philosophy. Within these sections the central issues, debates and problems are examined, including possible worlds, essentialism, counterfactuals, ontological dependence, modal fictionalism, deflationism, the integration challenge, conceivability, a priori knowledge, laws of nature, natural kinds, and logical necessity. The Routledge Handbook of Modality is essential reading for students and researchers in epistemology, metaphysics and philosophy of language. It will also be very useful for those in related fields in philosophy such as philosophy of mathematics, logic and philosophy of science.
Set Theory
This book is designed for readers who know elementary mathematical logic and axiomatic set theory, and who want to learn more about set theory. The primary focus of the book is on the independence proofs. Most famous among these is the independence of the Continuum Hypothesis (CH); that is, there are models of the axioms of set theory (ZFC) in which CH is true, and other models in which CH is false. More generally, cardinal exponentiation on the regular cardinals can consistently be anything not contradicting the classical theorems of Cantor and König. The basic methods for the independence proofs are the notion of constructibility, introduced by Gödel, and the method of forcing, introduced by Cohen. This book describes these methods in detail, verifi es the basic independence results for cardinal exponentiation, and also applies these methods to prove the independence of various mathematical questions in measure theory and general topology. Before the chapters on forcing, there is a fairly long chapter on "infi nitary combinatorics". This consists of just mathematical theorems (not independence results), but it stresses the areas of mathematics where set-theoretic topics (such as cardinal arithmetic) are relevant. There is, in fact, an interplay between infi nitary combinatorics and independence proofs. Infi nitary combinatorics suggests many set-theoretic questions that turn out to be independent of ZFC, but it also provides the basic tools used in forcing arguments. In particular, Martin's Axiom, which is one of the topics under infi nitary combinatorics, introduces many of the basic ingredients of forcing.
Presents a novel approach to set theory that is entirely operational. This approach avoids the existential axioms associated with traditional Zermelo-Fraenkel set theory, and provides both a foundation for set theory and a practical approach to learning the subject.