Download Free A Kind Of Non Associative Groupoids And Quasi Neutrosophic Extended Triplet Groupoids Qnet Groupoids Book in PDF and EPUB Free Download. You can read online A Kind Of Non Associative Groupoids And Quasi Neutrosophic Extended Triplet Groupoids Qnet Groupoids and write the review.

The various generalized associative laws can be considered as generalizations of traditional symmetry. Based on the theories of CA-groupoid, TA-groupoid and neutrosophic extended triplet (NET), this paper first proposes a new concept, which is type-2 cyclic associative groupoid (shortly by T2CA-groupoid), and gives some examples and basic properties. Furthermore, as a combination of neutrosophic extended triplet group (NETG) and T2CAgroupoid, the notion of type-2 cyclic associative neutrosophic extended triplet groupoid (T2CANET-groupoid) is introduced, and a decomposition theorem of T2CA-NET-groupoid is proved. Finally, as a generalization of neutrosophic extended triplet group (NETG), the concept of quasi neutrosophic extended triplet groupoid (QNET-groupoid) is introduced, and the relationships among T2CA-QNET-groupoid, T2CA-NET-groupoid and CA-NET-groupoid are discussed.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: n-Refined Neutrosophic Modules, A Neutrosophic Approach to Digital Images, A Novel Method for Neutrosophic Assignment Problem by using Interval-Valued Trapezoidal Neutrosophic Number.
Neutrosophic Sets and Systems (NSS) is an academic journal, published quarterly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.
In this paper, a new notion of q-filter in quantum B-algebra is proposed, and quotient structures are constructed by q-filters (in contrast, although the notion of filter in quantum B-algebra has been defined before this paper, but corresponding quotient structures cannot be constructed according to the usual methods).
With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.
Neutrosophic extended triplet group is a new algebra structure and is different from the classical group. In this paper, the notion of generalized neutrosophic extended triplet group is proposed and some properties are discussed.