Download Free A Group Theoretical Approach To Quantum Optics Book in PDF and EPUB Free Download. You can read online A Group Theoretical Approach To Quantum Optics and write the review.

Written by major contributors to the field who are well known within the community, this is the first comprehensive summary of the many results generated by this approach to quantum optics to date. As such, the book analyses selected topics of quantum optics, focusing on atom-field interactions from a group-theoretical perspective, while discussing the principal quantum optics models using algebraic language. The overall result is a clear demonstration of the advantages of applying algebraic methods to quantum optics problems, illustrated by a number of end-of-chapter problems. An invaluable source for atomic physicists, graduates and students in physics.
Written by major contributors to the field who are well known within the community, this is the first comprehensive summary of the many results generated by this approach to quantum optics to date. As such, the book analyses selected topics of quantum optics, focusing on atom-field interactions from a group-theoretical perspective, while discussing the principal quantum optics models using algebraic language. The overall result is a clear demonstration of the advantages of applying algebraic methods to quantum optics problems, illustrated by a number of end-of-chapter problems. An invaluable source for atomic physicists, graduates and students in physics.
This volume contains ten lectures presented in the series ULB Lectures in Nonlinear Optics at the Universite Libre de Bruxelles during the period October 28 to November 4, 1991. A large part of the first six lectures is taken from material prepared for a book of somewhat larger scope which will be published,by Springer under the title Quantum Statistical Methods in Quantum Optics. The principal reason for the early publication of the present volume concerns the material contained in the last four lectures. Here I have put together, in a more or less systematic way, some ideas about the use of stochastic wavefunctions in the theory of open quantum optical systems. These ideas were developed with the help of two of my students, Murray Wolinsky and Liguang Tian, over a period of approximately two years. They are built on a foundation laid down in a paper written with Surendra Singh, Reeta Vyas, and Perry Rice on waiting-time distributions and wavefunction collapse in resonance fluorescence [Phys. Rev. A, 39, 1200 (1989)]. The ULB lecture notes contain my first serious atte~pt to give a complete account of the ideas and their potential applications. I am grateful to Professor Paul Mandel who, through his invitation to give the lectures, stimulated me to organize something useful out of work that may, otherwise, have waited considerably longer to be brought together.
This established textbook provides an accessible but comprehensive introduction to the quantum nature of light and its interaction with matter. The field of quantum optics is covered with clarity and depth, from the underlying theoretical framework of field quantization, atom–field interactions, and quantum coherence theory, to important and modern applications at the forefront of current research such as quantum interferometry, squeezed light, quantum entanglement, cavity quantum electrodynamics, laser-cooled trapped ions, and quantum information processing. The text is suitable for advanced undergraduate and graduate students and would be an ideal main text for a course on quantum optics. This long-awaited second edition builds upon the success of the first edition, including many new developments in the field, particularly in the area of quantum state engineering. Additional homework problems have been added, and content from the first edition has been updated and clarified throughout.
This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.
The borderline of quantum electrodynamics and quantum optics offer spectacular results and problems concerning the foundations of radiation theory. Perhaps the major new viewpoint that has emerged from recent investigations is that one can now work inside a time-dependent quantum process, whereas up to now all elementary quantum processes were either stationary, or one worked with asymptotic in-and out-states, i.e. an S-matrix approach. In the-rirst part of this volume, the Quantum Electrodynamics, the present status of the main approaches to this most accurate of all physical theories are discussed: the Hamiltonian approach, the Green's function approach with particular emphasis to bound state problems, and the newer, nonperturbative approach. The latest numerical results on radiative corrections, Lamb shifts and anomalous magnetic moments are reviewed with new results for high Z atoms. Also discussed are different theoretical interpretations of the radiative phenomena as due to quantized field vacuum fluctuations or due to self energy. A small group of contributions are devoted to the physics and mathematical description of decaying or unstable states in quantum theory. This remarkable phenomenon of quantum theory still needs complete clarification, it is a time-dependent phenomenon, which can be described also by asymptotic S-matrix methods, but with complex energies.
This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to deepen the knowledge.
In this book, the fundamentals of quantum optics are introduced in a sufficient depth for their practical application and for an understanding and treatment of specialized problems arising in recent research. On the basis of a general quantum-field-theoretical approach, the topics are presented in a unified manner.
This is the third, revised and extended edition of the acknowledged "Lectures on Quantum Optics" by W. Vogel and D.-G. Welsch. It offers theoretical concepts of quantum optics, with special emphasis on current research trends. A unified concept of measurement-based nonclassicality and entanglement criteria and a unified approach to medium-assisted electromagnetic vacuum effects including Van der Waals and Casimir Forces are the main new topics that are included in the revised edition. The rigorous development of quantum optics in the context of quantum field theory and the attention to details makes the book valuable to graduate students as well as to researchers. Voices to the new edition: "There are many good books in this area, but this one really excels in terms of broad coverage, choice of topics, and precision. It is very useful as a textbook for a quantum optics course, and also as a general reference for researchers in quantum optics. ... Also, the new edition includes some subtle and fundamental material about non-classicality, medium-assisted electromagnetic vacuum effects, and leaky cavities, based on research developed by the authors." Prof. Luiz Davidovich, Rio de Janeiro