Download Free A Geometric Mechanism For Diffusion In Hamiltonian Systems Overcoming The Large Gap Problem Heuristics And Rigorous Verification On A Model Book in PDF and EPUB Free Download. You can read online A Geometric Mechanism For Diffusion In Hamiltonian Systems Overcoming The Large Gap Problem Heuristics And Rigorous Verification On A Model and write the review.

Beginning by introducing a geometric mechanism for diffusion in a priori unstable nearly integrable dynamical systems. This book is based on the observation that resonances, besides destroying the primary KAM tori, create secondary tori and tori of lower dimension. It argues that these objects created by resonances can be incorporated in transition chains taking the place of the destroyed primary KAM tori.The authors establish rigorously the existence of this mechanism in a simplemodel that has been studied before. The main technique is to develop a toolkit to study, in a unified way, tori of different topologies and their invariant manifolds, their intersections as well as shadowing properties of these bi-asymptotic orbits. This toolkit is based on extending and unifyingstandard techniques. A new tool used here is the scattering map of normally hyperbolic invariant manifolds.The model considered is a one-parameter family, which for $\varepsilon = 0$ is an integrable system. We give a small number of explicit conditions the jet of order $3$ of the family that, if verified imply diffusion. The conditions are just that some explicitely constructed functionals do not vanish identically or have non-degenerate critical points, etc.An attractive feature of themechanism is that the transition chains are shorter in the places where the heuristic intuition and numerical experimentation suggests that the diffusion is strongest.
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
A selection of results, spanning a broad spectrum of disciplines, from the MSRI program on Hamiltonian Systems during Fall 2018.
The first complete proof of Arnold diffusion—one of the most important problems in dynamical systems and mathematical physics Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. In this groundbreaking book, Vadim Kaloshin and Ke Zhang provide the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. Kaloshin and Zhang follow Mather's strategy but emphasize a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, this book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.
We introduce a geometric mechanism for diffusion in a priori unstable nearly integrable dynamical systems. It is based on the observation that resonances, besides destroying the primary KAM tori, create secondary tori and tori of lower dimension. We argue that these objects created by resonances can be incorporated in transition chains taking the place of the destroyed primary KAM tori. We establish rigorously the existence of this mechanism in a simple model that has been studied before. The main technique is to develop a toolkit to study, in a unified way, tori of different topologies and their invariant manifolds, their intersections as well as shadowing properties of these bi-asymptotic orbits. This toolkit is based on extending and unifying standard techniques. A new tool used here is the scattering map of normally hyperbolic invariant manifolds. The model considered is a one-parameter family, which for $\varepsilon = 0$ is an integrable system. We give a small number of explicit conditions the jet of order $3$ of the family that, if verified imply diffusion. The conditions are just that some explicitely constructed functionals do not vanish identically or have non-degenerate critical points, etc. An attractive feature of the mechanism is that the transition chains are shorter in the places where the heuristic intuition and numerical experimentation suggests that the diffusion is strongest.
This is a semi-popular mathematics book aimed at a broad readership of mathematically literate scientists, especially mathematicians and physicists who are not experts in classical mechanics or KAM theory, and scientific-minded readers. Parts of the book should also appeal to less mathematically trained readers with an interest in the history or philosophy of science.The scope of the book is broad: it not only describes KAM theory in some detail, but also presents its historical context (thus showing why it was a “breakthrough”). Also discussed are applications of KAM theory (especially to celestial mechanics and statistical mechanics) and the parts of mathematics and physics in which KAM theory resides (dynamical systems, classical mechanics, and Hamiltonian perturbation theory).Although a number of sources on KAM theory are now available for experts, this book attempts to fill a long-standing gap at a more descriptive level. It stands out very clearly from existing publications on KAM theory because it leads the reader through an accessible account of the theory and places it in its proper context in mathematics, physics, and the history of science.
In this the authors obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows them to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. There is also an introduction and study of the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve somenatural algorithmic problems.
Parabolic Higgs bundles on a Riemann surface are of interest for many reasons, one of them being their importance in the study of representations of the fundamental group of the punctured surface in the complex general linear group. in this paper the authors calculate the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles with fixed and non-fixed determinant, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and the authors carry out a careful analysis of them by studying their variation with this parameter. Thus the authors obtain in particular information about the topology of the moduli spaces of parabolic triples for the value of the parameter relevant to the study of parabolic Higgs bundles. The remaining critical submanifolds are also described: one of them is the moduli space of parabolic bundles, while the rem
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
This volume contains the detailed text of the major lectures delivered during the I-CELMECH Training School 2020 held in Milan (Italy). The school aimed to present a contemporary review of recent results in the field of celestial mechanics, with special emphasis on theoretical aspects. The stability of the Solar System, the rotations of celestial bodies and orbit determination, as well as the novel scientific needs raised by the discovery of exoplanetary systems, the management of the space debris problem and the modern space mission design are some of the fundamental problems in the modern developments of celestial mechanics. This book covers different topics, such as Hamiltonian normal forms, the three-body problem, the Euler (or two-centre) problem, conservative and dissipative standard maps and spin-orbit problems, rotational dynamics of extended bodies, Arnold diffusion, orbit determination, space debris, Fast Lyapunov Indicators (FLI), transit orbits and answer to a crucial question, how did Kepler discover his celebrated laws? Thus, the book is a valuable resource for graduate students and researchers in the field of celestial mechanics and aerospace engineering.