Download Free A Framework For Unsupervised Learning Of Dialogue Strategies Book in PDF and EPUB Free Download. You can read online A Framework For Unsupervised Learning Of Dialogue Strategies and write the review.

This book addresses the problems of spoken dialogue system design and especially automatic learning of optimal strategies for man-machine dialogues. Besides the description of the learning methods, this text proposes a framework for realistic simulation of human-machine dialogues based on probabilistic techniques, which allows automatic evaluation and unsupervised learning of dialogue strategies. This framework relies on stochastic modelling of modules composing spoken dialogue systems as well as on user modelling. Special care has been taken to build models that can either be hand-tuned or learned from generic data.
Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience.
Annotation. This book constitutes the refereed proceedings of the Second International Workshop on Spoken Dialogue Systems, IWDS 2010, held in Gotemba, Japan, in October 2010. The 22 session papers presented together with 2 invited keynote talks were carefully reviewed and selected from numerous submissions. The papers deal with topics around Spoken Dialogue Systems for Ambient Environment and discuss common issues of theories, applications, evaluation, limitations, general tools and techniques.
This book discusses the Partially Observable Markov Decision Process (POMDP) framework applied in dialogue systems. It presents POMDP as a formal framework to represent uncertainty explicitly while supporting automated policy solving. The authors propose and implement an end-to-end learning approach for dialogue POMDP model components. Starting from scratch, they present the state, the transition model, the observation model and then finally the reward model from unannotated and noisy dialogues. These altogether form a significant set of contributions that can potentially inspire substantial further work. This concise manuscript is written in a simple language, full of illustrative examples, figures, and tables.
Data driven methods have long been used in Automatic Speech Recognition (ASR) and Text-To-Speech (TTS) synthesis and have more recently been introduced for dialogue management, spoken language understanding, and Natural Language Generation. Machine learning is now present “end-to-end” in Spoken Dialogue Systems (SDS). However, these techniques require data collection and annotation campaigns, which can be time-consuming and expensive, as well as dataset expansion by simulation. In this book, we provide an overview of the current state of the field and of recent advances, with a specific focus on adaptivity.
The past decade has seen a revolution in the field of spoken dialogue systems. As in other areas of Computer Science and Artificial Intelligence, data-driven methods are now being used to drive new methodologies for system development and evaluation. This book is a unique contribution to that ongoing change. A new methodology for developing spoken dialogue systems is described in detail. The journey starts and ends with human behaviour in interaction, and explores methods for learning from the data, for building simulation environments for training and testing systems, and for evaluating the results. The detailed material covers: Spoken and Multimodal dialogue systems, Wizard-of-Oz data collection, User Simulation methods, Reinforcement Learning, and Evaluation methodologies. The book is a research guide for students and researchers with a background in Computer Science, AI, or Machine Learning. It navigates through a detailed case study in data-driven methods for development and evaluation of spoken dialogue systems. Common challenges associated with this approach are discussed and example solutions are provided. This work provides insights, lessons, and inspiration for future research and development – not only for spoken dialogue systems in particular, but for data-driven approaches to human-machine interaction in general.
One of the goals of artificial intelligence (AI) is creating autonomous agents that must make decisions based on uncertain and incomplete information. The goal is to design rational agents that must take the best action given the information available and their goals. Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions provides an introduction to different types of decision theory techniques, including MDPs, POMDPs, Influence Diagrams, and Reinforcement Learning, and illustrates their application in artificial intelligence. This book provides insights into the advantages and challenges of using decision theory models for developing intelligent systems.
This book presents lectures given at the 8th International Workshop on Spoken Dialog Systems. As agents evolve in terms of their ability to carry on a dialog with users, several qualities are emerging as essential components of a successful system. Users do not carry on long conversations on only one topic—they tend to switch between several topics. Thus the authors are observing the emergence of multi-domain systems that enable users to seamlessly hop from one domain to another. The systems have become active social partners. Accordingly, work on social dialog has become crucial to active and engaging human–robot/agent interaction. These new systems call for a coherent framework that guides their actions as chatbots and conversational agents. Human–Robot/Agent assessment mechanisms naturally lend themselves to this task. As these systems increasingly assist humans in a multitude of tasks, the ethics of their existence, their design and their interaction with users are becoming crucial issues. This book discusses the essential players and features involved, such as chat-based agents, multi-domain dialog systems, human–robot interaction, social dialog policy, and advanced dialog system architectures.
The increasing complexity of our world demands new perspectives on the role of technology in human decision making. We need new technology to cope with the increasingly complex and information-rich nature of our modern society. This is particularly true for critical environments such as crisis management and traffic management, where humans need to engage in close collaborations with artificial systems to observe and understand the situation and respond in a sensible way. The book Interactive Collaborative Information Systems addresses techniques that support humans in situations in which complex information handling is required and that facilitate distributed decision-making. The theme integrates research from information technology, artificial intelligence and human sciences to obtain a multidisciplinary foundation from which innovative actor-agent systems for critical environments can emerge. It emphasizes the importance of building actor-agent communities: close collaborations between human and artificial actors that highlight their complementary capabilities in situations where task distribution is flexible and adaptive. This book focuses on the employment of innovative agent technology, advanced machine learning techniques, and cognition-based interface technology for the use in collaborative decision support systems.
Spoken dialog systems have the potential to offer highly intuitive user interfaces, as they allow systems to be controlled using natural language. However, the complexity inherent in natural language dialogs means that careful testing of the system must be carried out from the very beginning of the design process. This book examines how user models can be used to support such early evaluations in two ways: by running simulations of dialogs, and by estimating the quality judgments of users. First, a design environment supporting the creation of dialog flows, the simulation of dialogs, and the analysis of the simulated data is proposed. How the quality of user simulations may be quantified with respect to their suitability for both formative and summative evaluation is then discussed. The remainder of the book is dedicated to the problem of predicting quality judgments of users based on interaction data. New modeling approaches are presented, which process the dialogs as sequences, and which allow knowledge about the judgment behavior of users to be incorporated into predictions. All proposed methods are validated with example evaluation studies.