Download Free A First Course In Atmospheric Radiation Book in PDF and EPUB Free Download. You can read online A First Course In Atmospheric Radiation and write the review.

This textbook covers the essentials of atmospheric radiation at a level appropriate to advanced undergraduates and first-year graduate students. It was written specifically to be readable and technically accessible to students having no prior background in the subject area and who may or may not intend to continue with more advanced study of radiation or remote sensing. The author emphasizes physical insight, first and foremost, but backed by the essential mathematical relationships. The second edition adds new exercises, improved figures, a table of symbols, and discussions of new topics, such as the Poynting vector and the energy balance within the atmosphere. The book web page includes additional resources for courses taught using this book, including downloadable/printable PDF figures as well as solutions to most problems (for instructors of recognized courses only).
An Introduction to Atmospheric Radiation
Contributor biographical information for An introduction to atmospheric physics / David G. Andrews. Bibliographic record and links to related information available from the Library of Congress catalog Biographical text provided by the publisher (may be incomplete or contain other coding). The Library of Congress makes no claims as to the accuracy of the information provided, and will not maintain or otherwise edit/update the information supplied by the publisher. -- -- David Andrews has been a lecturer in Physics at Oxford University and a Physics tutor at Lady Margaret Hall, Oxford, for 20 years. During this time he has had extensive experience of teaching a wide range of physics courses, including atmospheric physics. This experience has included giving lectures to large student audiences and also giving tutorials to small groups. Tutorials, in particular, have given him insights into the kinds of problems that physics students encounter when learning atmospheric physics, and the kinds of topics that excite them. His broad teaching experience has also helped him introduce students to connections between topics in atmospheric physics and related topics in other areas of physics. He feels that it is particularly important to expose today's physics students to the excitements and challenges presented by the atmosphere and climate. He has also published a graduate textbook, Middle Atmosphere Dynamics, with J.R. Holton and C.B. Leovy (1987, Academic Press). He is a Fellow of the Royal Meteorological Society, a Member of the Institute of Physics, and a Member of the American Meteorological Society.
Basic Concepts: Composition, Structure, and State. First and Second Laws of Thermodynamics. Transfer Processes. Thermodynamics of Water. Nucleation and Diffusional Growth. Moist Thermodynamics Processes in the Atmosphere. Static Stability of the Atmosphere and Ocean. Cloud Characteristics and Processes. Ocean Surface Exchanges of Heat and Freshwater. Sea, Ice, Snow, and Glaciers. Thermohaline Processes in the Ocean. Special Topics: Global Energy and Entropy Balances. Thermodynamics Feedbacks in the Climate System. Planetary Atmospheres and Surface Ice. Appendices. Subject Index.
Atmospheric chemistry is one of the fastest growing fields in the earth sciences. Until now, however, there has been no book designed to help students capture the essence of the subject in a brief course of study. Daniel Jacob, a leading researcher and teacher in the field, addresses that problem by presenting the first textbook on atmospheric chemistry for a one-semester course. Based on the approach he developed in his class at Harvard, Jacob introduces students in clear and concise chapters to the fundamentals as well as the latest ideas and findings in the field. Jacob's aim is to show students how to use basic principles of physics and chemistry to describe a complex system such as the atmosphere. He also seeks to give students an overview of the current state of research and the work that led to this point. Jacob begins with atmospheric structure, design of simple models, atmospheric transport, and the continuity equation, and continues with geochemical cycles, the greenhouse effect, aerosols, stratospheric ozone, the oxidizing power of the atmosphere, smog, and acid rain. Each chapter concludes with a problem set based on recent scientific literature. This is a novel approach to problem-set writing, and one that successfully introduces students to the prevailing issues. This is a major contribution to a growing area of study and will be welcomed enthusiastically by students and teachers alike.
Meeting the need for teaching material suitable for students of atmospheric science and courses on atmospheric radiation, this textbook covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the contents applies to planetary atmosphere, with graded discussions providing a thorough treatment of subjects, including single scattering by particles at different levels of complexity. The discussion of the simple multiple scattering theory introduces concepts in more advanced theories, such that the more complicated two-stream theory allows readers to progress beyond the pile-of-plates theory. The authors are physicists teaching at the largest meteorology department in the US at Penn State. The problems given in the text come from students, colleagues, and correspondents, and the figures designed especially for this book facilitate comprehension. Ideal for advanced undergraduate and graduate students of atmospheric science. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/
Providing a comprehensive introduction to atmospheric science, the author identifies the fundamental concepts and principles related to atmospheric science.
MATLAB scripts (M-files) are provided on the accompanying CD.
The extraordinary growth and development of atmospheric sciences during the last dec ades, and the concern for certain applied problems, such as those related to the environ ment, have prompted the introduction of college and university courses in this field. There is consequently a need for good textbooks. A few appropriate books have appeared in the last few years, aimed at a variety of levels and having different orientations. Most of them are of rather limited scope; in par ticular, a number of them are restricted to the field of dynamics and its meteorological applications. There is still a need for an elementary, yet comprehensive, survey of the terrestrial atmosphere. This short volume attempts to fill that need. This book is intended as a textbook that can be used for a university course at a second or third year level. It requires only elementary mathematics and such knowledge of physics as should be acquired in most first-year general physicS courses. It may serve in two ways. A general review of the field is provided for students who work or plan to work in other fields (such as geophysics, geography, environmental sciences, space research), but are interested in acquiring general information; at the same time, it may serve as a general and elementary introduction for students who will later specialize in some area of atmospheric science.
Covers essential parts of cloud and precipitation physics and has been extensively rewritten with over 60 new illustrations and many new and up to date references. Many current topics are covered such as mesoscale meteorology, radar cloud studies and numerical cloud modelling, and topics from the second edition, such as severe storms, precipitation processes and large scale aspects of cloud physics, have been revised. Problems are included as examples and to supplement the text.