Download Free A Deduction Model Of Belief And Its Logics Book in PDF and EPUB Free Download. You can read online A Deduction Model Of Belief And Its Logics and write the review.

What role, if any, does formal logic play in characterizing epistemically rational belief? Traditionally, belief is seen in a binary way - either one believes a proposition, or one doesn't. Given this picture, it is attractive to impose certain deductive constraints on rational belief: that one's beliefs be logically consistent, and that one believe the logical consequences of one's beliefs. A less popular picture sees belief as a graded phenomenon. This picture (explored more bydecision-theorists and philosophers of science thatn by mainstream epistemologists) invites the use of probabilistic coherence to constrain rational belief. But this latter project has often involved defining graded beliefs in terms of preferences, which may seem to change the subject away fromepistemic rationality.Putting Logic in its Place explores the relations between these two ways of seeing beliefs. It argues that the binary conception, although it fits nicely with much of our commonsense thought and talk about belief, cannot in the end support the traditional deductive constraints on rational belief. Binary beliefs that obeyed these constraints could not answer to anything like our intuitive notion of epistemic rationality, and would end up having to be divorced from central aspects of ourcognitive, practical, and emotional lives.But this does not mean that logic plays no role in rationality. Probabilistic coherence should be viewed as using standard logic to constrain rational graded belief. This probabilistic constraint helps explain the appeal of the traditional deductive constraints, and even underlies the force of rationally persuasive deductive arguments. Graded belief cannot be defined in terms of preferences. But probabilistic coherence may be defended without positing definitional connections between beliefsand preferences. Like the traditional deductive constraints, coherence is a logical ideal that humans cannot fully attain. Nevertheless, it furnishes a compelling way of understanding a key dimension of epistemic rationality.
The first comprehensive account of the concept and practices of deduction covering philosophy, history, cognition and mathematical practice.
Stringently reviewed papers presented at the October 1992 meeting held in Cambridge, Mass., address such topics as nonmonotonic logic; taxonomic logic; specialized algorithms for temporal, spatial, and numerical reasoning; and knowledge representation issues in planning, diagnosis, and natural langu
This book creates a conceptual schema that acts as a correlation between Epistemology and Epistemic Logic. It connects both fields and offers a proper theoretical foundation for the contemporary developments of Epistemic Logic regarding the dynamics of information. It builds a bridge between the view of Awareness Justification Internalism, and a dynamic approach to Awareness Logic. The book starts with an introduction to the main topics in Epistemic Logic and Epistemology and reviews the disconnection between the two fields. It analyses three core notions representing the basic structure of the conceptual schema: “Epistemic Awareness”, “Knowledge” and “Justification”. Next, it presents the Explicit Aware Knowledge (EAK) Schema, using a diagram of three ellipses to illustrate the schema, and a formal model based on a neighbourhood-model structure, that shows one concrete application of the EAK-Schema into a logical structure. The book ends by presenting conclusions and final remarks about the uses and applications of the EAK-Schema. It shows that the most important feature of the schema is that it serves both as a theoretical correlate to the dynamic extensions of Awareness Logic, providing it with a philosophical background, and as an abstract conceptual structure for a re-interpretation of Epistemology.
This book constitutes the refereed proceedings of the International Conference on Formal and Applied Practical Reasoning, FAPR '96, held in Bonn, Germany, in June 1996. The 51 revised full papers included in the book together with eight posters were carefully selected for presentation at the conference. The book addresses current aspects of the highly interdisciplinary area of practical reasoning in artificial intelligence, philosophy, psychology, linguistics, software engineering, intelligent systems, and industrial applications. Among the topics addressed are user modeling, belief, legal reasoning, argumentation, dialogue logic, default reasoning, analogy, metareasoning, temporal and procedural reasoning, and many others.
The interaction of database and AI technologies is crucial to such applications as data mining, active databases, and knowledge-based expert systems. This volume collects the primary readings on the interactions, actual and potential, between these two fields. The editors have chosen articles to balance significant early research and the best and most comprehensive articles from the 1980s. An in-depth introduction discusses basic research motivations, giving a survey of the history, concepts, and terminology of the interaction. Major themes, approaches and results, open issues and future directions are all discussed, including the results of a major survey conducted by the editors of current work in industry and research labs. Thirteen sections follow, each with a short introduction. Topics examined include semantic data models with emphasis on conceptual modeling techniques for databases and information systems and the integration of data model concepts in high-level data languages, definition and maintenance of integrity constraints in databases and knowledge bases, natural language front ends, object-oriented database management systems, implementation issues such as concurrency control and error recovery, and representation of time and knowledge incompleteness from the viewpoints of databases, logic programming, and AI.
This book constitutes the refereed proceedings of the 9th European Conference on Logics in Artificial Intelligence, JELIA 2004, held in Lisbon, Portugal, in September 2004. The 52 revised full papers and 15 revised systems presentation papers presented together with the abstracts of 3 invited talks were carefully reviewed and selected from a total of 169 submissions. The papers are organized in topical sections on multi-agent systems; logic programming and nonmonotonic reasoning; reasoning under uncertainty; logic programming; actions and causation; complexity; description logics; belief revision; modal, spatial, and temporal logics; theorem proving; and applications.