Download Free A Conceptual History Of Space And Symmetry Book in PDF and EPUB Free Download. You can read online A Conceptual History Of Space And Symmetry and write the review.

This book presents the author’s personal historical perspective and conceptual analysis on symmetry and geometry. The author enlightens with modern views the historical process which led to the contemporary vision of space and symmetry that are used in theoretical physics and in particular in such abstract and advanced descriptions of the physical world as those provided by supergravity. The book is written intertwining storytelling and philosophical argumentation with some essential technical material. The author argues that symmetry and geometry are inextricably entangled and their current meaning is the result of a long process of abstraction which was determined through history and can be understood within the analytic system of thought of western civilization that started with the Ancient Greeks. The evolution of geometry and symmetry theory in the last forty years has been deeply and constructively influenced by supersymmetry/supergravity and the allied constructions of strings and branes. Further advances in theoretical physics cannot be based simply on the Galilean method of interrogating nature and then formulating a testable theory to explain the observed phenomena. One ought to interrogate human thought, meaning frontier-line mathematics concerned with geometry and symmetry in order to find there the threads of so far unobserved correspondences, reinterpretations and renewed conceptions.
Many literary critics seem to think that an hypothesis about obscure and remote questions of history can be refuted by a simple demand for the production of more evidence than in fact exists. The demand is as easy to make as it is impossible to satisfy. But the true test of an hypothesis, if it cannot be shown to con?ict with known truths, is the number of facts that it correlates and explains. Francis M. Cornford [1914] 1934, 220. It was in the autumn of 1997 that the research project leading to this publication began. One of us [GH], while a visiting fellow at the Center for Philosophy of Science (University of Pittsburgh), gave a talk entitled, “Proportions and Identity: The Aesthetic Aspect of Symmetry”. The presentation focused on a confusion s- rounding the concept of symmetry: it exhibits unity, yet it is often claimed to reveal a form of beauty, namely, harmony, which requires a variety of elements. In the audience was the co-author of this book [BRG] who responded with enthusiasm, seeking to extend the discussion of this issue to historical sources in earlier periods. A preliminary search of the literature persuaded us that the history of symmetry was rich in possibilities for new insights into the making of concepts. John Roche’s brief essay (1987), in which he sketched the broad outlines of the history of this concept, was particularly helpful, and led us to conclude that the subject was worthy of monographic treatment.
This volume summarizes the many alternatives and extensions to Einstein's General Theory of Relativity, and shows how symmetry principles can be applied to identify physically viable models. The first part of the book establishes the foundations of classical field theory, providing an introduction to symmetry groups and the Noether theorems. A quick overview of general relativity is provided, including discussion of its successes and shortcomings, then several theories of gravity are presented and their main features are summarized. In the second part, the 'Noether Symmetry Approach' is applied to theories of gravity to identify those which contain symmetries. In the third part of the book these selected models are tested through comparison with the latest experiments and observations. This constrains the free parameters in the selected models to fit the current data, demonstrating a useful approach that will allow researchers to construct and constrain modified gravity models for further applications.
In a self contained and exhaustive work the author covers Group Theory in its multifaceted aspects, treating its conceptual foundations in a proper logical order. First discrete and finite group theory, that includes the entire chemical-physical field of crystallography is developed self consistently, followed by the structural theory of Lie Algebras with a complete exposition of the roots and Dynkin diagrams lore. A primary on Fibre-Bundles, Connections and Gauge fields, Riemannian Geometry and the theory of Homogeneous Spaces G/H is also included and systematically developed.
The first comprehensive book on the topic in half a century explores recent symmetry – and symmetry breaking – related discoveries, and discusses the questions and answers they raise in diverse disciplines: particle and high-energy physics, structural chemistry and the biochemistry of proteins, in genetic code study, in brain research, and also in architectural structures, and business decision making, to mention only a few examples.
The thesis tackles two distinct problems of great interest in gravitational mechanics — one relativistic and one Newtonian. The relativistic one is concerned with the "first law of binary mechanics", a remarkably simple variational relation that plays a crucial role in the modern understanding of the gravitational two-body problem, thereby contributing to the effort to detect gravitational-wave signals from binary systems of black holes and neutron stars. The work reported in the thesis provides a mathematically elegant extension of previous results to compact objects that carry spin angular momentum and quadrupolar deformations, which more accurately represent astrophysical bodies than mere point particles. The Newtonian problem is concerned with the isochrone problem of celestial mechanics, namely the determination of the set of radial potentials whose bounded orbits have a radial period independent of the angular momentum. The thesis solves this problem completely in a geometrical way and explores its consequence on a variety of levels, in particular with a complete characterisation of isochrone orbits. The thesis is exceptional in the breadth of its scope and achievements. It is clearly and eloquently written, makes excellent use of images, provides careful explanations of the concepts and calculations, and it conveys the author’s personality in a way that is rare in scientific writing, while never sacrificing academic rigor.
A more critical look at the man known today by most as one of the greatest scientists of all time. A unique and thought-provoking narrative quite at odds with the generally-accepted dogma. How exactly did Einstein rise to become so revered today? This is also the story of Mileva Maric, a little-known woman who just so happened to be Einstein’s first wife. When Einstein presented his famous ‘Annus Mirabilis’ or ‘Wonder Year’ papers in 1905, Mileva was of equal training in the fields of mathematics and physics and indeed, more accomplished than Einstein in many other disciplines. “He seems more an intuitive physicist,” stated Chaim Weizmann, a promoter of Einstein. “He is not an experimental physicist and though he is able to detect fallacies in the conceptions of physical science, he must turn his general outlines of theory over to someone else to work out.” Historians report that Einstein collaborated with other scientists from 1907. In 1905, there was Mileva.
Physics.
When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.
Historical surveys of the concept of space considers Judeo-Christian ideas about space, Newton's concept of absolute space, space from 18th century to the present. Numerous original quotations and bibliographical references. "Admirably compact and swiftly paced style." — Philosophy of Science. Foreword by Albert Einstein.