Download Free A Conceptual Guide To Thermodynamics Book in PDF and EPUB Free Download. You can read online A Conceptual Guide To Thermodynamics and write the review.

Thermodynamics is the science that describes the behavior of matter at the macroscopic scale, and how this arises from individual molecules. As such, it is a subject of profound practical and fundamental importance to many science and engineering fields. Despite extremely varied applications ranging from nanomotors to cosmology, the core concepts of thermodynamics such as equilibrium and entropy are the same across all disciplines. A Conceptual Guide to Thermodynamics serves as a concise, conceptual and practical supplement to the major thermodynamics textbooks used in various fields. Presenting clear explanations of the core concepts, the book aims to improve fundamental understanding of the material, as well as homework and exam performance. Distinctive features include: Terminology and Notation Key: A universal translator that addresses the myriad of conventions, terminologies, and notations found across the major thermodynamics texts. Content Maps: Specific references to each major thermodynamic text by section and page number for each new concept that is introduced. Helpful Hints and Don’t Try Its: Numerous useful tips for solving problems, as well as warnings of common student pitfalls. Unique Explanations: Conceptually clear, mathematically fairly simple, yet also sufficiently precise and rigorous. A more extensive set of reference materials, including older and newer editions of the major textbooks, as well as a number of less commonly used titles, is available online at http://www.conceptualthermo.com. Undergraduate and graduate students of chemistry, physics, engineering, geosciences and biological sciences will benefit from this book, as will students preparing for graduate school entrance exams and MCATs.
Thermodynamics is the science that describes the behavior of matter at the macroscopic scale, and how this arises from individual molecules. As such, it is a subject of profound practical and fundamental importance to many science and engineering fields. Despite extremely varied applications ranging from nanomotors to cosmology, the core concepts of thermodynamics such as equilibrium and entropy are the same across all disciplines. A Conceptual Guide to Thermodynamics serves as a concise, conceptual and practical supplement to the major thermodynamics textbooks used in various fields. Presenting clear explanations of the core concepts, the book aims to improve fundamental understanding of the material, as well as homework and exam performance. Distinctive features include: Terminology and Notation Key: A universal translator that addresses the myriad of conventions, terminologies, and notations found across the major thermodynamics texts. Content Maps: Specific references to each major thermodynamic text by section and page number for each new concept that is introduced. Helpful Hints and Don’t Try Its: Numerous useful tips for solving problems, as well as warnings of common student pitfalls. Unique Explanations: Conceptually clear, mathematically fairly simple, yet also sufficiently precise and rigorous. A more extensive set of reference materials, including older and newer editions of the major textbooks, as well as a number of less commonly used titles, is available online at http://www.conceptualthermo.com. Undergraduate and graduate students of chemistry, physics, engineering, geosciences and biological sciences will benefit from this book, as will students preparing for graduate school entrance exams and MCATs.
Clear treatment of systems and first and second laws of thermodynamics features informal language, vivid and lively examples, and fresh perspectives. Excellent supplement for undergraduate science or engineering class.
Take some heat off the complexity of thermodynamics Does the mere thought of thermodynamics make you sweat? It doesn't have to! This hands-on guide helps you score your highest in a thermodynamics course by offering easily understood, plain-English explanations of how energy is used in things like automobiles, airplanes, air conditioners, and electric power plants. Thermodynamics 101 — take a look at some examples of both natural and man-made thermodynamic systems and get a handle on how energy can be used to perform work Turn up the heat — discover how to use the first and second laws of thermodynamics to determine (and improve upon) the efficiency of machines Oh, behave — get the 411 on how gases behave and relate to one another in different situations, from ideal-gas laws to real gases Burn with desire — find out everything you need to know about conserving mass and energy in combustion processes Open the book and find: The laws of thermodynamics Important properties and their relationships The lowdown on solids, liquids, and gases How work and heat go handin hand The cycles that power thermodynamic processes Chemical mixtures and reactions Ten pioneers in thermodynamics Real-world applications of thermodynamic laws and concepts Learn to: Master the concepts and principles of thermodynamics Develop the problem-solving skills used by professional engineers Ace your thermodynamics course
Thermodynamics and Statistical Mechanics Thermodynamics and Statistical Mechanics An Integrated Approach This textbook brings together the fundamentals of the macroscopic and microscopic aspects of thermal physics by presenting thermodynamics and statistical mechanics as complementary theories based on small numbers of postulates. The book is designed to give the instructor flexibility in structuring courses for advanced undergraduates and/or beginning graduate students and is written on the principle that a good text should also be a good reference. The presentation of thermodynamics follows the logic of Clausius and Kelvin while relating the concepts involved to familiar phenomena and the modern student’s knowledge of the atomic nature of matter. Another unique aspect of the book is the treatment of the mathematics involved. The essential mathematical concepts are briefly reviewed before using them, and the similarity of the mathematics to that employed in other fields of physics is emphasized. The text gives in-depth treatments of low-density gases, harmonic solids, magnetic and dielectric materials, phase transitions, and the concept of entropy. The microcanonical, canonical, and grand canonical ensembles of statistical mechanics are derived and used as the starting point for the analysis of fluctuations, blackbody radiation, the Maxwell distribution, Fermi-Dirac statistics, Bose-Einstein condensation, and the statistical basis of computer simulations.
This is the first modern approach to thermodynamics written specifically for a first undergraduate course. It covers the fundamental formalism with some attention given to its history; describes basic applications of the formalism and continues with a number of additional applications that instructors can use according to their particular degree program – these chapters cover thermal radiation, biological systems, nano systems, classical stability theory, and principles of statistical thermodynamics. A wide range of examples appear throughout the book from biological, engineering and atmospheric systems. Each chapter contains a bibliography and numerous examples and exercises. An accompanying web site will provide students with information and links to data sources and other thermodynamics-related sites, and instructors will be able to download complete solutions to exercises.
A step-by-step guide for students (and faculty) on the use of Aspen in teaching thermodynamics • Easily-accessible modern computational techniques opening up new vistas in teaching thermodynamics A range of applications of Aspen Plus in the prediction and calculation of thermodynamic properties and phase behavior using the state-of-the art methods • Encourages students to develop engineering insight by doing repetitive calculations with changes in parameters and/or models • Calculations and application examples in a step-by-step manner designed for out-of-classroom self-study • Makes it possible to easily integrate Aspen Plus into thermodynamics courses without using in-class time • Stresses the application of thermodynamics to real problems
Die Grundlagen der klassischen und der statistischen Thermodynamik werden hier in solider Weise anhand sorgfältig durchdachter Argumentationen eingeführt, ergänzt durch zahlreiche Beispiele und Anwendungen. Systematisch werden die Grundbegriffe der Atomtheorie erarbeitet. Gestützt auf diese Kenntnisse kann der Leser dann die Beschreibung und Vorhersage der Eigenschaften makroskopischer Systeme erlernen.
Take some heat off the complexity of thermodynamics Does the mere thought of thermodynamics make you sweat? It doesn't have to! This hands-on guide helps you score your highest in a thermodynamics course by offering easily understood, plain-English explanations of how energy is used in things like automobiles, airplanes, air conditioners, and electric power plants. Thermodynamics 101 — take a look at some examples of both natural and man-made thermodynamic systems and get a handle on how energy can be used to perform work Turn up the heat — discover how to use the first and second laws of thermodynamics to determine (and improve upon) the efficiency of machines Oh, behave — get the 411 on how gases behave and relate to one another in different situations, from ideal-gas laws to real gases Burn with desire — find out everything you need to know about conserving mass and energy in combustion processes Open the book and find: The laws of thermodynamics Important properties and their relationships The lowdown on solids, liquids, and gases How work and heat go handin hand The cycles that power thermodynamic processes Chemical mixtures and reactions Ten pioneers in thermodynamics Real-world applications of thermodynamic laws and concepts Learn to: Master the concepts and principles of thermodynamics Develop the problem-solving skills used by professional engineers Ace your thermodynamics course
Classic 1912 article reformulated the foundations of the statistical approach in mechanics. Largely still valid, the treatment covers older formulation of statistico-mechanical investigations, modern formulation of kineto-statistics of the gas model, and more. 1959 edition.