Download Free A Computer Study Of The Electrical Activity Of The Heart Book in PDF and EPUB Free Download. You can read online A Computer Study Of The Electrical Activity Of The Heart and write the review.

The International Conference on Complex Systems (ICCS) offers a unique interdisciplinary venue for researchers from the physical and biological sciences, social sciences, psychology and cognitive science, engineering, medicine, human systems, and global systems. This proceedings volume gathers selected papers from the conference. The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI pursues research, education, knowledge dissemination, and community development efforts around the world to promote the study of complex systems and its application for the benefit of society. NECSI hosts the International Conference on Complex Systems and publishes the NECSI Book.
This book provides a comprehensive guide to the state-of-the-art in cardiovascular computing and highlights novel directions and challenges in this constantly evolving multidisciplinary field. The topics covered span a wide range of methods and clinical applications of cardiovascular computing, including advanced technologies for the acquisition and analysis of signals and images, cardiovascular informatics, and mathematical and computational modeling.
This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad — it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.
Health After Forty
Electrical activity in the myocardium coordinates the contraction of the heart, and its knowledge could lead to a better understanding, diagnosis, and treatment of cardiac diseases. This electrical activity generates an electromagnetic field that propagates outside the heart and reaches the human torso surface, where it can be easily measured. Classical electrocardiography aims to interpret the 12-lead electrocardiogram (ECG) to determine cardiac activity and support the diagnosis of cardiac pathologies such as arrhythmias, altered activations, and ischemia. More recently, a higher number of leads is used to reconstruct a more detailed quantitative description of the electrical activity in the heart by solving the so-called inverse problem of electrocardiography. This technique is known as ECG imaging. Today, clinical applications of ECG imaging are showing promising results in guiding a variety of electrophysiological interventions such as catheter ablation of atrial fibrillation and ventricular tachycardia. However, in order to promote the adoption of ECG imaging in the routine clinical practice, further research is required regarding more accurate mathematical methods, further scientific validation under different preclinical scenarios and a more extensive clinical validation
New edition of the classic complete reference book for cardiologists and trainee cardiologists on the theory and practice of electrocardiography, one of the key modalities used for evaluating cardiology patients and deciding on appropriate management strategies.