Download Free A Computational Intelligence Paradigm Book in PDF and EPUB Free Download. You can read online A Computational Intelligence Paradigm and write the review.

Offering a wide range of programming examples implemented in MATLAB, Computational Intelligence Paradigms: Theory and Applications Using MATLAB presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and pr
This book presents futuristic trends in computational intelligence including algorithms used in different application domains in health informatics covering bio-medical, bioinformatics, &biological sciences. It provides conceptual framework with a focus on computational intelligence techniques in biomedical engineering &health informatics.
This book presents a new methodological analysis of two competing research paradigms of artificial intelligence and cognitive science-the symbolic versus the connectionist paradigms. Providing an accessible introduction to the fundamentals of both paradigms, the book derives new objectives for future research that will help to integrate aspects of both areas to obtain more powerful AI techniques and to promote a deeper understanding of cognition.
Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts. The author strongly emphasizes the practical performance issues involved in writing real working programs of significant size. Chapters on troubleshooting and efficiency are included, along with a discussion of the fundamentals of object-oriented programming and a description of the main CLOS functions. This volume is an excellent text for a course on AI programming, a useful supplement for general AI courses and an indispensable reference for the professional programmer.
Edge computing is focused on devices and technologies that are attached to the internet of things (IoT). Identifying IoT use across a range of industries and measuring strategic values helps identify what technologies to pursue and can avoid wasted resources on deployments with limited values. Edge Computing and Computational Intelligence Paradigms for the IoT is a critical research book that provides a complete insight on the recent advancements and integration of intelligence in IoT. This book highlights various topics such as disaster prediction, governance, and healthcare. It is an excellent resource for researchers, working professionals, academicians, policymakers, and defense companies.
This book features research on the innovative applications of advanced computational intelligence paradigms. Coverage includes architectures of computational intelligence paradigms, knowledge discovery, pattern classification, and gene linkage analysis.
Offering a wide range of programming examples implemented in MATLAB(R), Computational Intelligence Paradigms: Theory and Applications Using MATLAB(R) presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and programming, and swarm intelligence. It covers numerous intelligent computing methodologies and algorithms used in CI research. The book first focuses on neural networks, including common artificial neural networks; neural networks based on data classification, data association, and data conceptualization; and real-world applications of neural networks. It then discusses fuzzy sets, fuzzy rules, applications of fuzzy systems, and different types of fused neuro-fuzzy systems, before providing MATLAB illustrations of ANFIS, classification and regression trees, fuzzy c-means clustering algorithms, fuzzy ART map, and Takagi-Sugeno inference systems. The authors also describe the history, advantages, and disadvantages of evolutionary computation and include solved MATLAB programs to illustrate the implementation of evolutionary computation in various problems. After exploring the operators and parameters of genetic algorithms, they cover the steps and MATLAB routines of genetic programming. The final chapter introduces swarm intelligence and its applications, particle swarm optimization, and ant colony optimization. Full of worked examples and end-of-chapter questions, this comprehensive book explains how to use MATLAB to implement CI techniques for the solution of biological problems. It will help readers with their work on evolution dynamics, self-organization, natural and artificial morphogenesis, emergent collective behaviors, swarm intelligence, evolutionary strategies, genetic programming, and the evolution of social behaviors.
Computational Intelligence: An Introduction, Second Edition offers an in-depth exploration into the adaptive mechanisms that enable intelligent behaviour in complex and changing environments. The main focus of this text is centred on the computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. Engelbrecht provides readers with a wide knowledge of Computational Intelligence (CI) paradigms and algorithms; inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without any difficulty through a single Java class as part of the CI library. Key features of this second edition include: A tutorial, hands-on based presentation of the material. State-of-the-art coverage of the most recent developments in computational intelligence with more elaborate discussions on intelligence and artificial intelligence (AI). New discussion of Darwinian evolution versus Lamarckian evolution, also including swarm robotics, hybrid systems and artificial immune systems. A section on how to perform empirical studies; topics including statistical analysis of stochastic algorithms, and an open source library of CI algorithms. Tables, illustrations, graphs, examples, assignments, Java code implementing the algorithms, and a complete CI implementation and experimental framework. Computational Intelligence: An Introduction, Second Edition is essential reading for third and fourth year undergraduate and postgraduate students studying CI. The first edition has been prescribed by a number of overseas universities and is thus a valuable teaching tool. In addition, it will also be a useful resource for researchers in Computational Intelligence and Artificial Intelligence, as well as engineers, statisticians, operational researchers, and bioinformaticians with an interest in applying AI or CI to solve problems in their domains. Check out http://www.ci.cs.up.ac.za for examples, assignments and Java code implementing the algorithms.
This book aims to bring together Researchers, Scientists, Engineers, Scholars and Students in the areas of computer engineering and information technology, and provides a forum for the dissemination of original research results, new ideas, Research and development, practical experiments, which concentrate on both theory and practices, for the benefit of the society. The book also provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of Computer Science and Information Technology in the context of Distributed computing, Big data, High performance computing, Internet-of-Things, and digital pedagogy. It is becoming increasingly important to develop adaptive, intelligent computing-centric, energy-aware, secure and privacy-aware mechanisms in high performance computing and IoT applications. This book aspires to convey researchers’ experiences, to present excellent result analysis, future scopes, and challenges facing the field of computer science, information technology, telecommunication, and digital pedagogy. This book aims to attract researchers and practitioners who are working in Information Technology and Computer Science. This book is about basics and high level concepts regarding intelligent computing paradigm, communications, and digital learning process. The book serves as a useful guide for Undergraduates, Postgraduates and Research Scholar in the field of Computer Science, Information Technology, and Electronics Engineering. We believe that this volume not only presents novel and interesting ideas but also will stimulate interesting discussions from the participants and inspire new ideas.
"This book contains contributions that cover a wide spectrum of very important real-world engineering problems, and explores the implementation of neural networks for the representation of structural responses in earthquake engineering. It assesses the efficiency of seismic design procedures and describes the latest findings in intelligent optimal control systems and their applications in structural engineering"--Provided by publisher.