Download Free A Comparison Of Short Term Statistical Forecasting Techniques With Australian Macro Economic Data Book in PDF and EPUB Free Download. You can read online A Comparison Of Short Term Statistical Forecasting Techniques With Australian Macro Economic Data and write the review.

Australia’s statistics are of a high quality. Based on the review of its statistical practices, a set of recommendations is presented designed to increase its adherence to internationally accepted statistical practices. The aim of the review is to enhance the usefulness of Australia’s statistics in terms of cross-cutting recommendations, making national accounts series available; a national consumer price index; producer price index; and government finance statistics to include a breakdown of stocks and flows of financial assets and liabilities, monetary statistics, balance of payments, and international investment position statistics.
Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.
Brings together dynamic equilibrium theory, data analysis, and advanced econometric and computational methods to provide a comprehensive set of techniques for use by academic economists as well as professional macroeconomists in various fields. This book starts from a class of DSGE models and describes methods needed to estimate their parameters.
This book is part of the proceedings of The International Conference on Recent Developments in Statistics, Econometrics and Forecasting 2010, which was organized to provide opportunities for academics and researchers to share their knowledge on recent developments in this area. The conference featured the most up-to-date research results and applications in statistics, econometrics and forecasting. The book has fifteen chapters contributed by different authors and can be divided into five parts: Time Series and Econometric Modeling, Linear Models, Non-parametrics, Statistical Applications and Statistical Methodology. This book will be helpful to graduate students, researchers and applied statisticians working in the area of time series, statistical and econometric modeling.
This handbook summarises knowledge from experts and empirical studies. It provides guidelines that can be applied in fields such as economics, sociology, and psychology. Includes a comprehensive forecasting dictionary.
Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.
Principles of Forecasting: A Handbook for Researchers and Practitioners summarizes knowledge from experts and from empirical studies. It provides guidelines that can be applied in fields such as economics, sociology, and psychology. It applies to problems such as those in finance (How much is this company worth?), marketing (Will a new product be successful?), personnel (How can we identify the best job candidates?), and production (What level of inventories should be kept?). The book is edited by Professor J. Scott Armstrong of the Wharton School, University of Pennsylvania. Contributions were written by 40 leading experts in forecasting, and the 30 chapters cover all types of forecasting methods. There are judgmental methods such as Delphi, role-playing, and intentions studies. Quantitative methods include econometric methods, expert systems, and extrapolation. Some methods, such as conjoint analysis, analogies, and rule-based forecasting, integrate quantitative and judgmental procedures. In each area, the authors identify what is known in the form of `if-then principles', and they summarize evidence on these principles. The project, developed over a four-year period, represents the first book to summarize all that is known about forecasting and to present it so that it can be used by researchers and practitioners. To ensure that the principles are correct, the authors reviewed one another's papers. In addition, external reviews were provided by more than 120 experts, some of whom reviewed many of the papers. The book includes the first comprehensive forecasting dictionary.