Download Free 5th International Symposium Of Space Optical Instruments And Applications Book in PDF and EPUB Free Download. You can read online 5th International Symposium Of Space Optical Instruments And Applications and write the review.

This book gathers selected and expanded contributions presented at the 5th Symposium on Space Optical Instruments and Applications, which was held in Beijing, China, on September 5–7, 2018. This conference series is organized by the Sino-Holland Space Optical Instruments Laboratory, a cooperative platform between China and the Netherlands. The symposium focused on key technological problems regarding optical instruments and their applications in a space context. It covered the latest developments, experiments and results on the theory, instrumentation and applications of space optics. The book is split into five main sections: The first covers optical remote sensing system design, the second focuses on advanced optical system design, and the third addresses remote sensor calibration and measurement. Remote sensing data processing and information extraction are then presented, followed by a final section on remote sensing data applications.
This book gathers selected and expanded contributions presented at the 5th Symposium on Space Optical Instruments and Applications, which was held in Beijing, China, on September 5-7, 2018. This conference series is organized by the Sino-Holland Space Optical Instruments Laboratory, a cooperative platform between China and the Netherlands. The symposium focused on key technological problems regarding optical instruments and their applications in a space context. It covered the latest developments, experiments and results on the theory, instrumentation and applications of space optics. The book is split into five main sections: The first covers optical remote sensing system design, the second focuses on advanced optical system design, and the third addresses remote sensor calibration and measurement. Remote sensing data processing and information extraction are then presented, followed by a final section on remote sensing data applications.
This proceedings book contains selected and expanded contributions presented at the 7th International Symposium of Space Optical Instruments and Applications, held in Beijing, China, on Oct 21–23, 2022. The meeting was organized by the Sino-Holland Space Optical Instruments Joint Laboratory and supported by Beijing Institute and Space Mechanics and Electricity. In the recent years, space optical payloads are advancing toward high spatial resolution, high temporal resolution, high radiometric resolution, and high spectral resolution and becoming more and more intelligent. Commercial remote sensing industry has made steady progress in terms of the scope of satellite systems and applications. Meanwhile, space optical remote sensing data has been extensively applied to monitoring of resources, meteorology, ocean, environment, disaster reduction, and many other fields. The symposium focused on key innovations of space-based optical instruments and applications and the newest developments in theory, technology, and applications in optics, in both China and Europe. It thus provided a platform for exchanges on the latest research and current and planned optical missions. The major topics covered in these conference proceedings are: 1) Advanced space optical remote sensing application technology. 2) Deep space exploration and astronomical observation technology. 3) Advanced space optical remote sensing instrument technology. 4) Commercial optical observation technology and services.
This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 – 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications.
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircrafts. It covers a wide range of topics, including but not limited to, intelligent computing communication and control; new methods of navigation, estimation and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation and control of miniature aircraft; and sensor systems for guidance, navigation and control etc. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.
This proceedings volume contains selected and expanded contributions presented at the 6th International Symposium of Space Optical Instruments and Applications, held in Delft, the Netherlands on Sep 24th–25th, 2019. The meeting was organized by the Sino-Holland Space Optical Instruments Joint Laboratory and supported by TU Delft. The symposium focused on key innovations of space-based optical instruments and applications, and the newest developments in theory, technology and applications in optics, in both China and Europe. It thus provided a platform for exchanges on the latest research and current and planned optical missions. The major topics covered in these conference proceedings are: space optical remote sensing system design; advanced optical system design and manufacturing; remote sensor calibration and measurement; remote sensing data processing and information retrieval; and remote sensing data applications.
Contents:Tests of Underlying Principles in Gravitational Physics and Their Theoretical RationaleFrameworks for Testing Gravitational Theories, Present Status of Theory Testing and Future ProspectsRotational Effects in General Relativity, Frame-Dragging and the Geodetic EffectExperiments and Theory of Gravitational RadiationAdvanced Technologies: Clocks, Drag-Free and Cryogenics in SpaceClassical GravityConsiderations in Spacecraft Design, Program Management and the Use of Columbus Space Station Readership: Physicists interested in relativity and astrophysicists. keywords:
Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation. Volume I, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation introduces the fundamentals of hyperspectral or imaging spectroscopy data, including hyperspectral data processes, sensor systems, spectral libraries, and data mining and analysis, covering both the strengths and limitations of these topics. This book also presents and discusses hyperspectral narrowband data acquired in numerous unique spectral bands in the entire length of the spectrum from various ground-based, airborne, and spaceborne platforms. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume I through the editors’ perspective. Key Features of Volume I: Provides the fundamentals of hyperspectral remote sensing used in agricultural crops and vegetation studies. Discusses the latest advances in hyperspectral remote sensing of ecosystems and croplands. Develops online hyperspectral libraries, proximal sensing and phenotyping for understanding, modeling, mapping, and monitoring crop and vegetation traits. Implements reflectance spectroscopy of soils and vegetation. Enumerates hyperspectral data mining and data processing methods, approaches, and machine learning algorithms. Explores methods and approaches for data mining and overcoming data redundancy; Highlights the advanced methods for hyperspectral data processing steps by developing or implementing appropriate algorithms and coding the same for processing on a cloud computing platform like the Google Earth Engine. Integrates hyperspectral with other data, such as the LiDAR data, in the study of vegetation. Includes best global expertise on hyperspectral remote sensing of agriculture, crop water use, plant species detection, crop productivity and water productivity mapping, and modeling.