Download Free 2018 Ieee International Magnetic Conference Intermag Book in PDF and EPUB Free Download. You can read online 2018 Ieee International Magnetic Conference Intermag and write the review.

This book, Motion Planning for Dynamic Agents, presents a thorough overview of current advancements and provides insights into the fascinating and vital field of aeronautics. It focuses on modern research and development, with an emphasis on dynamic agents. The chapters address a wide range of complex capabilities, including formation control, guidance and navigation, control techniques, wide-space coverage for inspection and exploration, and the best pathfinding in unknown territory. This book is a valuable resource for scholars, practitioners, and amateurs alike due to the variety of perspectives that are included, which help readers gain a sophisticated understanding of the difficulties and developments in the area of study.
This book offers a balanced and comprehensive guide to the core principles, fundamental properties, experimental approaches, and state-of-the-art applications of two major groups of emerging non-volatile memory technologies, i.e. spintronics-based devices as well as resistive switching devices, also known as Resistive Random Access Memory (RRAM). The first section presents different types of spintronic-based devices, i.e. magnetic tunnel junction (MTJ), domain wall, and skyrmion memory devices. This section describes how their developments have led to various promising applications, such as microwave oscillators, detectors, magnetic logic, and neuromorphic engineered systems. In the second half of the book, the underlying device physics supported by different experimental observations and modelling of RRAM devices are presented with memory array level implementation. An insight into RRAM desired properties as synaptic element in neuromorphic computing platforms from material and algorithms viewpoint is also discussed with specific example in automatic sound classification framework.
Green Energy Systems: Design, Modelling, Synthesis and Applications provides a comprehensive introduction to the design, modeling, optimization and application of predictable and alternative energy systems. With a strong focus on the fundamentals, the book provides an overview of the energy potential and conversion topology of green energy sources, the design and analysis of off grid solar and wind energy sources, and their application in effective energy management in rural communities. Sections address energy systems from solar, wind, biomass, and hybrid energy sources, and include discussions of power electronic circuit topologies for energy conversion in both off and on grid systems. The second part of the book addresses energy harvesting at different scales, with a particular emphasis on micro energy harvesting for low power electronics like wearable devices. A wide range of applications are also discussed, alongside their challenges and solutions. Finally, case studies are presented on select topics to give readers deeper insights into the real-world applications discussed. - Introduces the fundamental principles underlying green energy systems, their characterization, analysis, modelling, and evaluation - Includes a wide range of applications of new functional materials for next-generation devices - Provides supporting data and calculations alongside real-world case studies
The proceeding is a collection of research papers presented at the 11th International Conference on Robotics, Vision, Signal Processing & Power Applications (RoViSP 2021). The theme of RoViSP 2021 “Enhancing Research and Innovation through the Fourth Industrial Revolution (IR 4.0)” served as a platform for researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe to present and exchange their research findings and development activities through oral presentations. The book covers various topics of interest, including: Robotics, Control, Mechatronics and Automation Telecommunication Systems and Applications Electronic Design and Applications Vision, Image and Signal Processing Electrical Power, Energy and Industrial Applications Computer and Information Technology Biomedical Engineering and Applications Intelligent Systems Internet-of-things Mechatronics Mobile Technology
Magnetic and spintronic materials are ubiquitous in modern technological applications, e.g. in electric motors, power generators, sensors and actuators, not to mention information storage and processing. Medical technology has also greatly benefited from magnetic materials – especially magnetic nanoparticles – for therapy and diagnostics methods. All of the above-mentioned applications rely on the properties of the materials used. These properties in turn depend on intrinsic and extrinsic material parameters. The former are related to the actual elements used and their properties, e.g. atomic magnetic moment and exchange interaction between atoms; the latter are related to the structural and microstructural properties of the materials used, e.g. their crystal structure, grain size, and grain boundary phases. Focusing on state-of-the-art magnetic and spintronic materials, this book will introduce readers to a range of related topics in Physics and Materials Science. Phenomena and processes at the nanoscale are of particular importance in this context; accordingly, much of the book addresses such topics.
Study of a magnetic gearbox for energy storage system application. Contains simulation results and tests carried out to verify the behavior of the torque output as a function of geometric and operation parameters. Focused on magnetic gearboxes with gains of 10 times or higher operating at high speed.
Sensors are the eyes or/and ears of an intelligent system, such as UAV, AGV and robots. With the development of material, signal processing, and multidisciplinary interactions, more and more smart sensors are proposed and fabricated under increasing demands for homes, the industry, and military fields. Networks of sensors will be able to enhance the ability to obtain huge amounts of information (big data) and improve precision, which also mirrors the developmental tendency of modern sensors. Moreover, artificial intelligence is a novel impetus for sensors and networks, which gets sensors to learn and think and feed more efficient results back. This book includes new research results from academia and industry, on the subject of “Smart Sensors and Networks”, especially sensing technologies utilizing Artificial Intelligence. The topics include: smart sensors biosensors sensor network sensor data fusion artificial intelligence deep learning mechatronics devices for sensors applications of sensors for robotics and mechatronics devices
This book presents the proceedings of the 5th International Conference on Electrical, Control & Computer Engineering 2019, held in Kuantan, Pahang, Malaysia, on 29th July 2019. Consisting of two parts, it covers the conferences’ main foci: Part 1 discusses instrumentation, robotics and control, while Part 2 addresses electrical power systems. The book appeals to professionals, scientists and researchers with experience in industry.The conference provided a platform for professionals, scientists and researchers with experience in industry.
MACHINE LEARNING PARADIGM FOR INTERNET OF THINGS APPLICATIONS As companies globally realize the revolutionary potential of the IoT, they have started finding a number of obstacles they need to address to leverage it efficiently. Many businesses and industries use machine learning to exploit the IoT’s potential and this book brings clarity to the issue. Machine learning (ML) is the key tool for fast processing and decision-making applied to smart city applications and next-generation IoT devices, which require ML to satisfy their working objective. Machine learning has become a common subject to all people like engineers, doctors, pharmacy companies, and business people. The book addresses the problem and new algorithms, their accuracy, and their fitness ratio for existing real-time problems. Machine Learning Paradigm for Internet of Thing Applications provides the state-of-the-art applications of machine learning in an IoT environment. The most common use cases for machine learning and IoT data are predictive maintenance, followed by analyzing CCTV surveillance, smart home applications, smart-healthcare, in-store ‘contextualized marketing’, and intelligent transportation systems. Readers will gain an insight into the integration of machine learning with IoT in these various application domains.
Spintronics, being a part of electronics, is under intense development for about forty years and mainly concerns transport of electronics spin in low-dimensional structures. This field, based on often difficult theoretical concepts of quantum physics, has surprisingly strong and real technological and application consequences. Thus, spintronic solutions concern memory systems, information processing devices and are used as sensors to detect variety of physical fields. The early development of this field can be associated with the names of such scientists as: E. I. Rashba, A. Fert, P. Grünberg, J. Barnaś, B. Hillebrands, G. Güntherodt, I. K. Schuller, M. Grimsditch, A. Hoffman, P. Vavassori, and S. Datta. This list is absolutely not closed and might be easily extended, however, it results rather from scientific history and contacts with people who influenced the research carriers of the authors. The authors give in this up-dated 2nd edition an insight into this emerging field providing theoretical and experimental aspects of spintronics and guide readers from a basic understanding of fundamental processes to recent applications and future possibilities opened by ongoing research. The textbook is suited for students and for interested scientists who were discouraged by the theoretical formalism only.