Download Free 2011 Ieee International Symposium On Antennas And Propagation Apsursi 2011 Book in PDF and EPUB Free Download. You can read online 2011 Ieee International Symposium On Antennas And Propagation Apsursi 2011 and write the review.

This practical text gives engineers and technicians at all levels an easy-to-follow entry point into the subject of RF/EM wave propagation and antennas. While aimed primarily at those who are entering the field or transitioning from a related field, the book also helps experienced professionals obtain a more refined understanding of the various methodologies and processes in this area. The book covers the essentials, practices, technical details, and considerations needed to help a team of engineers design, install, and/or predict the technical performance of a new (or even existing) one-way, two-antenna (long radiating distance) RF communication system. The chapters are organized logically to walk you step by step through the application processes, showing you proven methods to bring about top performance, while also helping you factor in unanticipated variances, including those caused by the earth itself, earth’s gaseous atmosphere, rain, snow, hail, ice, ionospheric signal attenuation, and EM waves. This kind of understanding and consideration saves time, money, and much frustration in a project. With this book in hand, you will better understand RF/EM wave propagation and the technical vernacular used to describe it; become familiar with the various processes and considerations in analyzing, designing, and predicting the performance of new and existing antenna RF communications systems; and more confidently approach problem solving and possible solutions for reducing signal interference and loss. The chapter contents, while not sparing the reader exposure to radiated RF system design and analysis terminology, are written in a relaxed, conversational tone and easy-to-understand manner, making this a perfect learning tool for those entering or transitioning to this field, as well as an excellent supplement or foundational text for an instructional course. The book’s logically organized and easy-to-access chapter structure also facilitates its use as a bench reference for quick lookup or review.
This book examines mechatronics and automatic control systems. The book covers important emerging topics in signal processing, control theory, sensors, mechanic manufacturing systems and automation. The book presents papers from the second International Conference on Mechatronics and Automatic Control Systems held in Beijing, China on September 20-21, 2014. Examines how to improve productivity through the latest advanced technologies Covering new systems and techniques in the broad field of mechatronics and automatic control systems
This comprehensive new resource guides professionals in the latest methods used when designing active integrated antennas (AIA) for wireless communication devices for various standards. This book provides complete design procedures for the various elements of such active integrated antennas such as the matching network, the amplifier/active element as well as the antenna. This book offers insight into how active integration and co-design between the active components (amplifier, oscillator, mixer, diodes) and the antenna can provide better power transfer, higher gains, increased efficiencies, switched beam patterns and smaller design footprints. It introduces the co-design approach of active integrated antennas and its superior performance over conventional methods. Complete design examples are given of active integrated antenna systems for narrow and wideband applications as well as for multiple-input-multiple-output (MIMO) systems. Readers find the latest design methods for narrow and broadband RF matching networks. This book provides a complete listing of performance metrics for active integrated antennas. The book serves as a complete reference and design guide in the area of AIA.
A CubeSat is a miniaturized modular satellite that can be constructed from off-the-shelf components. With advancements in digital signal processing, power electronics, and packaging technology, it is feasible to fit science instruments and communication devices that were traditionally carried on larger satellites on CubeSat consolations. This not only reduces mission cost, repair, risk, but also provides more precise and real-time science data. Their low cost and versatility allow for CubeSats to be used to test technologies that are planned to use on larger satellites, to collect point-to-point data in space when launched as CubeSat constellations, or to monitor health of larger spacecrafts. This comprehensive reference explores CubeSat standards, launching methods, and detailed design guidelines for antennas specially made for CubeSat applications. Deployed CubeSat antennas, such as low gain antennas, high gain wire-based antennas, and horn and dish antennas as they relate to the technology are explored. Conformal CubeSat Antennas, including those that are independent of CubeSats and those integrated in CubeSat solar panels, are discussed. An antenna design guideline is provided to demonstrate the basics of a CubeSat link budget, which is transitionally published in signal and system community. Written by an expert in the field, this book enables readers to read antenna specifics when choosing communication front-end.
Provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced electromagnetic surfaces.
This book concerns a new paradigm in the field of UHF RFID systems: the positive exploitation of nonlinear signals generated by the chips integrated into the RFID tags. After having recalled the main principles in RFID technology and its current challenges notably with the emergence of Internet of Things or the smart connected environments, the purpose is to focus on the presence of nonlinearities produced by the nonlinear circuits of RFID chips: effects, nuisances and solutions but also and especially use of the phenomena. The presentation covers all aspects from the characterization of the nonlinear behavior of RFID tags and the associated platforms (distinguishing conducted and radiated measurement) to the design of new types of tags where nonlinearities are exploited in order to offer new capabilities or enhanced performance.
This book discusses the 3D printing of sensors, actuators, and antennas and illustrates how manufacturers can create smart materials that can be effectively used to prepare low-cost products. The book also includes how to select the appropriate process for your manufacturing needs. 3D Printing of Sensors, Actuators, and Antennas for Low-Cost Product Manufacturing offers the most recent developments in 3D printing of sensors, actuators, and antennas for low-cost product manufacturing; the book highlights some of the commercially available low-cost 3D printing processes that have higher efficiency and accuracy. Fundamental principles and working methodologies are presented with a critical review of the past work involved and current trends with future predictions. It covers composite and polymeric materials widely used and specifically focuses on low-cost elements. Recent breakthroughs and advantages in product manufacturing when printing smart materials are also discussed. Manufacturing engineers, product designers, manufacturing industries, as well as graduate students, and research scholars will find this book very useful for their work and studies.
This book presents a comprehensive study covering the design and application of microwave sensors for glucose concentration detection, with a special focus on glucose concentration tracking in watery and biological solutions. This book is based on the idea that changes in the glucose concentration provoke variations in the dielectric permittivity of the medium. Sensors whose electrical response is sensitive to the dielectric permittivity of the surrounding media should be able to perform as glucose concentration trackers. At first, this book offers an in-depth study of the dielectric permittivity of water–glucose solutions at concentrations relevant for diabetes purposes; in turn, it presents guidelines for designing suitable microwave resonators, which are then tested in both water–glucose solutions and multi-component human blood plasma solutions for their detection ability and sensitivities. Finally, a portable version is developed and tested on a large number of individuals in a real clinical scenario. All in all, the book reports on a comprehensive study on glucose monitoring devices based on microwave sensors. It covers in depth the theoretical background, provides extensive design guidelines to maximize sensitivity, and validates a portable device for applications in clinical settings.
Modern society thrives on communication that is instant and available at all times, a constant exchange of information that encompasses everything from video streaming to GPS navigation. Experts even suggest that in the near future everything from our cars to our kitchen appliances will be connected to the internet, a feat that would not be possible without advanced wireless technology. Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications showcases current trends and novel approaches in the design and analysis of the antennas that make wireless applications possible, while also identifying unique integration opportunities for antennas and wireless applications to work together. By featuring both theoretical and experimental approaches to integration, this book highlights specific design issues to assist a wide-range of readers including students, researchers, academics, and industry practitioners. This publication features chapters on a broad scope of topics including algorithms and antenna optimization, wireless infrastructure development, wireless applications of intelligent algorithms, antenna architecture, and antenna reconfiguration techniques.
A thorough treatment of energy harvesting technologies, highlighting radio frequency (RF) and hybrid-multiple technology harvesting. The authors explain the principles of solar, thermal, kinetic, and electromagnetic energy harvesting, address design challenges, and describe applications. The volume features an introduction to switched mode power converters and energy storage and summarizes the challenges of different system implementations, from wireless transceivers to backscatter communication systems and ambient backscattering. This practical resource is essential for researchers and graduate students in the field of communications and sensor technology, in addition to practitioners working in these fields.