Download Free 2002 Ieee 16th Annual Meeting Lasers And Electro Optics Society Book in PDF and EPUB Free Download. You can read online 2002 Ieee 16th Annual Meeting Lasers And Electro Optics Society and write the review.

This book introduces in detail the theory of adaptive optics and its correction technology for light wave distortion in wireless optical communication. It discusses the adaptive control algorithm of wavefront distortion, proportional+integral control algorithm and iterative control algorithm, and double fuzzy adaptive PID control algorithm. It also covers the SPGD algorithm of adaptive optics correction, deformable mirrors eigenmode method of wavefront aberration correction, vortex beam wavefront detecting wavefront aberration correction, liquid crystal spatial light modulator wavefront correction, different wavelengths of Gaussian beam transmission wavefront differences in the atmospheric turbulence and correction and with wavefront tilt correction adaptive optics wavefront aberration correction. Various distortion correction methods are verified by experiments and the experimental results are analyzed. This book is suitable for engineering and technical personnel engaged in wireless optical communication, college teachers, graduate students and senior undergraduate students.
This book focuses on optical wireless communications (OWC), an emerging technology with huge potential for the provision of pervasive and reliable next-generation communications networks. It shows how the development of novel and efficient wireless technologies can contribute to a range of transmission links essential for the heterogeneous networks of the future to support various communications services and traffic patterns with ever-increasing demands for higher data-transfer rates. The book starts with a chapter reviewing the OWC field, which explains different sub-technologies (visible-light, ultraviolet (UV) and infrared (IR) communications) and introduces the spectrum of application areas (indoor, vehicular, terrestrial, underwater, intersatellite, deep space, etc.). This provides readers with the necessary background information to understand the specialist material in the main body of the book, which is in four parts. The first of these deals with propagation modelling and channel characterization of OWC channels at different spectral bands and with different applications. The second starts by providing a unified information-theoretic treatment of OWC and then discusses advanced physical-layer methodologies (including, but not limited to: advanced coding, modulation diversity, cooperation and multi-carrier techniques) and the ultimate limitations imposed by practical constraints. On top of the physical layer come the upper-layer protocols and cross-layer designs that are the subject of the third part of the book. The last part of the book features a chapter-by-chapter assessment of selected OWC applications. Optical Wireless Communications is a valuable reference guide for academic researchers and practitioners concerned with the future development of the world’s communication networks. It succinctly but comprehensively presents the latest advances in the field.
The transmission speed of data communication systems is forecast to increase exponentially over the next decade. Development of both Si-based high-speed drivers as well as III-V-semiconductor-based high-speed vertical cavity surface emitting lasers (VCSELs) are prerequisites for future ultrahigh data-rate systems. This thesis presents: - a survey of the present state of the art of VCSELs - a systematic investigation of the various effects limiting present VCSELs - a catalogue of solutions to overcome present limits - detailed progress in modelling, fabricating and testing the currently most advanced VCSELs at the two commercially most important wavelengths.
Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era—the photonics century.
Optical properties, particularly in the infrared range of wavelengths, continue to be of enormous interest to both material scientists and device engineers. The need for the development of standards for data of optical properties in the infrared range of wavelengths is very timely considering the on-going transition of nano-technology from fundamental R&D to manufacturing. Radiative properties play a critical role in the processing, process control and manufacturing of semiconductor materials, devices, circuits and systems. The design and implementation of real-time process control methods in manufacturing requires the knowledge of the radiative properties of materials. Sensors and imagers operate on the basis of the radiative properties of materials. This book reviews the optical properties of various semiconductors in the infrared range of wavelengths. Theoretical and experimental studies of the radiative properties of semiconductors are presented. Previous studies, potential applications and future developments are outlined. In Chapter 1, an introduction to the radiative properties is presented. Examples of instrumentation for measurements of the radiative properties is described in Chapter 2. In Chapters 3-11, case studies of the radiative properties of several semiconductors are elucidated. The modeling and applications of these properties are explained in Chapters 12 and 13, respectively. In Chapter 14, examples of the global infrastructure for these measurements are illustrated.
Nanopapers: From Nanochemistry and Nanomanufacturing to Advanced Applications gives a comprehensive overview of the emerging technology of nanopapers. Exploring the latest developments on nanopapers in nanomaterials chemistry and nanomanufacturing technologies, this book outlines the unique properties of nanopapers and their advanced applications. Nanopapers are thin sheets or films made of nanomaterials such as carbon nanotubes, carbon nanofibers, nanoclays, cellulose nanofibrils, and graphene nanoplatelets. Noticeably, nanopapers allow highly concentrated nanoparticles to be tightly packed in a thin film to reach unique properties such as very high electrical and thermal conductivities, very low diffusivity, and strong corrosion resistance that are shared by conventional polymer nanocomposites. This book presents a concise introduction to nanopapers, covering concepts, terminology and applications. It outlines both current applications and future possibilities, and will be of great use to nanochemistry and nanomanufacturing researchers and engineers who want to learn more about how nanopapers can be applied. - Outlines the main uses of nanopapers, showing readers how this emerging technology should best be applied - Shows how the unique properties of nanopapers make them adaptable for use in a wide range of applications - Explores methods for the nanomanufacture of nanopapers
This book is a printed edition of the Special Issue "Photon-Counting Image Sensors" that was published in Sensors
The Fifth Generation (5G) of Wireless Communication is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Electrical and Electronic Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the Electrical and Electronic Engineering research area. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on the fifth generation (5G) of wireless communication, and open new possible research paths for further novel developments.
Optical communication systems carry the bulk of all data traffic worldwide. This book introduces multi-Terabit/s transmission systems and three key technologies for next generation networks. A software-defined multi-format transmitter, an optical comb source and an optical processing scheme for the fast Fourier transform for Tbit/s signals. Three world records demonstrate the potential: The first single laser 10 Tbit/s and 26 Tbit/s OFDM and the first 32.5 Tbit/s Nyquist WDM experiments.