Download Free 1d Oxide Nanostructures Obtained By Sol Gel And Hydrothermal Methods Book in PDF and EPUB Free Download. You can read online 1d Oxide Nanostructures Obtained By Sol Gel And Hydrothermal Methods and write the review.

This book presents wet chemical sol-gel and hydrothermal methods for 1D oxide nanostructure preparation. These methods represent an attractive route to multifunctional nanomaterials synthesis, as they are versatile, inexpensive and, thus, appropriate for obtaining a wide range of oxide materials with tailored morphology and properties. Three specific oxides (SiO2, TiO2, ZnO) are discussed in detail in order to illustrate the principle of the sol-gel and hydrothermal preparation of 1D oxide nanostructures. Other oxides synthesized via this method are also briefly presented. Throughout the book, the correlation between the tubular structure and the physico-chemical properties of these materials is highlighted. 1D oxide nanostructures exhibit interesting optical and electrical properties, due to their confined morphology. In addition, a well-defined geometry can be associated with chemically active species. For example, the pure SiO2 nanotubes presented a slight photocatalytic activity, while the Pt-doped SiO2 tubular materials act as microreactors in catalytic reactions. In the case of titania and titanate nanotubes, large specific surface area and pore volume, ion-exchange ability, enhanced light absorption, and fast electron-transport capability have attracted significant research interest. The chemical and physical modifications (microwave assisted hydrothermal methods) discussed here improve the formation kinetics of the nanotubes. The ZnO nanorods/tubes were prepared as random particles or as large areas of small, oriented 1D ZnO nanostructures on a variety of substrates. In the latter case a sol-gel layer is deposited on the substrate prior to the hydrothermal preparation. Using appropriate dopants, coatings of ZnO nanorods with controlled electrical behavior can be obtained.
This book is a printed edition of the Special Issue "Electrochemically Engineering of Nanoporous Materials" that was published in Nanomaterials
In recent years, carbon nitride, a new type of two-dimensional (2D) material, has attracted great interest, in terms of fundamental scientific investigation and potential practical applications, for a range of energy and environmental technologies. This can be largely attributed to its optoelectronic and physicochemical properties, including moderate band gap, adjustable energy band configuration, tailor-made surface functionalities, low cost, metal-free nature, remarkable thermochemical stability, and environmentally benign manufacturing protocol. Nanostructured Carbon Nitrides for Sustainable Energy and Environmental Applications offers a comprehensive, authoritative, and critical account of the recent progress in the development and application of multifunctional carbon nitride materials and their hybrid heterostructures. There are two major objectives of this book: first, to provide a systematic overview of the key design principles toward the fabrication of high-performance carbon nitride–based nanostructures; and second, to provide insights into a range of clean energy technologies and environmental remediation methods that build on these nanoengineered carbon nitrides. This book serves as an important reference source for materials scientists and engineers who are interested in developing their understanding of how carbon-based nanomaterials are being used for sustainable energy and environmental applications. - Helps users gain deeper insights into various aspects of carbon nitride materials from multidisciplinary perspectives - Covers how to apply nanostructured carbon nitrides to tackle global energy and environmental challenges in a sustainable manner - Explains the design and fabrication of carbon nitride-based materials with optimized structures, controlled morphologies, and tailored properties for practical implementation
Nanomaterials Synthesis: Design, Fabrication and Applications combines the present and emerging trends of synthesis routes of nanomaterials with the incorporation of various technologies. The book covers the new trends and challenges in the synthesis and surface engineering of a wide range of nanomaterials, including emerging technologies used for their synthesis. Significant properties, safety and sustainability and environmental impacts of the synthesis routes are explored. This book is an important information source that will help materials scientists and engineers who want to learn more about how different classes of nanomaterials are designed. - Highlights recent developments in, and opportunities created by, new nanomaterials synthesis methods - Explains major synthesis techniques for different types of nanomaterials - Discusses the challenges of using a variety of synthesis methods
Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. - Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices - Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures - Provides an in-depth overview of novel applications, including chromogenics, electronics and energy
This exciting new book is a unique compilation of data from a wide range of chemical and spectroscopic instrumentation and the integration of nanostructure characterisation drawn from physical, chemical, electrochemical, spectroscopic and electron microscopic measurements. It fills a gap in the current nanomaterials literature by documenting the latest research from scientific journals and patent literature to provide a concise yet balanced and integrated treatment of an interesting topic: titanium oxide nanostructures within the emerging fashionable area of nanomaterials. Of particular interest are the following key chapters: * Modification and Coating Techniques - provides a unique summary and discussion of available techniques to coat surfaces with nanostructured materials * Chemical Properties - relates structure to surface chemistry and hence applications * Structural and Physical Properties - reviews the relationship between nanostructure and physical properties providing a basis for the rationalisation of applications The book, a valuable reference point, is aimed at professionals, postgraduates and industrial research workers in nanomaterials. Readers will gain a knowledge of the methods for synthesising nanomaterials as well as an understanding of their structure and resulting physical characteristics and a knowledge of their (existing and potential) applications.
Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100 C) and low-temperature (under
1D Semiconducting Hybrid Nanostructures In-depth discussion on the physics, chemistry, and engineering beneath the construction of 1D semiconducting hybrid materials 1D Semiconducting Hybrid Nanostructures: Synthesis and Applications in Gas Sensing and Optoelectronics provides breakthrough research developments and trends in a variety of 1D hybrid nanostructures for chemi-resistive gas sensors and optoelectronics applications, including recent investigations and developments regarding the innovative designing approaches, fabrications, and methods used to characterize these hybrid nanostructures. The text also includes the surface and interface properties of 1D hybrid semiconducting nanostructured materials, as well as their optimization for applications in gas sensing and optoelectronics. This book further addresses the different issues of sensitivity, selectivity, and operating temperature of gas sensors based on hybrid 1D nanostructures. Moreover, it covers the novel and additional functional optoelectronic properties that originate at the interface of 1D semiconducting nanostructures combined with other low dimensional materials. Some of the specific sample topics covered in this book include: Gas sensing and optoelectronic applications of one-dimensional semiconducting hybrid nanostructures, plus synthesis and gas sensing application of 1D semiconducting hybrid nanostructures Room temperature gas sensing properties of metal oxide nanowire/graphene hybrid structures and highly sensitive room temperature gas sensors based on organic-inorganic nanofibers Synthesis and applications of 1D hybrid tin oxide nanostructures and recent advances in semiconducting nanowires-based hybrid structures for solar application Types of semiconducting hybrid nanostructures for optoelectronic devices and hybrid 1D semiconducting ZnO/GaN nanostructures Thanks to its comprehensive coverage of the subject from highly qualified authors who have significant experience in the field, 1D Semiconducting Hybrid Nanostructures is a must-have reference for senior undergraduate and graduate students, professionals, researchers, in the field of semiconductor physics, materials science, surface science, and chemical engineering.
In the last decade, nanomaterials have become a double-edged sword. On one hand, nanomaterials have proven their limitless potential not only for technological applications, but also for medical ones. On the other hand, the increasing use of these nanomaterials has raised concerns regarding their safety for environmental and human health, due to their potential toxicity. The toxic effects of nanomaterials depend on their type, surface geometry, diameter, length and function. This book intends to provide a comprehensive evidence-based overview of nanomaterial toxicity, from their synthesis and characterization, environmental impact, tests to assess their toxicity in vitro and in vivo, ways to modulate their impact on living organisms, to their beneficial use in biomedical applications.
The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use