Download Free 100 Years Of Fundamental Theoretical Physics In The Palm Of Your Hand Book in PDF and EPUB Free Download. You can read online 100 Years Of Fundamental Theoretical Physics In The Palm Of Your Hand and write the review.

This book aims to integrate, in a pedagogical and technical manner, with detailed derivations, all essential principles of fundamental theoretical physics as developed over the past 100 years. It covers: Quantum physics and Stability Problems in the Quantum World, Minkowski Spacetime Physics Particle Classifications and Underlying Symmetries, Symmetry Violations, Quantum Field Theory of Particle Interactions, Higgs Field Physics, Supersymmetry: A Theory with Mathematical Beauty Superstrings, Gravity and Supergravity, General Relativity Predictions, including Frame Dragging, Intricacies of Black Hole Physics, Perturbative and Non-perturbative Quantum Gravity Intricacies of Modern Cosmology, including Inflation and Power Spectrum If you are in the process of learning, or are lecturing on, any of the subjects above, then this is your book - irrespective of your specialty. With over-specialization and no time to master all the fields given above, students, and perhaps many physicists, may find it difficult to keep up with all the exciting developments going on, and are even less familiar with their underlying technicalities: e.g. they might have heard that the Universe is 13.8 billion years old, but have no idea on how this number is actually computed. This unique book will be of great value to graduate students, instructors and researchers interested in the intricacies and derivations of the many aspects of modern fundamental theoretical physics. And, although a graduate level book, some chapters may also be suitable for advanced undergraduates in their final year.
"If Ms. Frizzle were a physics student of Stephen Hawking, she might have written THE UNIVERSE IN YOUR HAND, a wild tour through the reaches of time and space, from the interior of a proton to the Big Bang to the rough suburbs of a black hole. It's friendly, excitable, erudite, and cosmic." —Jordan Ellenberg, New York Times besteselling author of How Not To Be Wrong Quantum physics, black holes, string theory, the Big Bang, dark matter, dark energy, parallel universes: even if we are interested in these fundamental concepts of our world, their language is the language of math. Which means that despite our best intentions of finally grasping, say, Einstein's Theory of General Relativity, most of us are quickly brought up short by a snarl of nasty equations or an incomprehensible graph. Christophe Galfard's mission in life is to spread modern scientific ideas to the general public in entertaining ways. Using his considerable skills as a brilliant theoretical physicist and successful young adult author, The Universe in Your Hand employs the immediacy of simple, direct language to show us, not explain to us, the theories that underpin everything we know about our universe. To understand what happens to a dying star, we are asked to picture ourselves floating in space in front of it. To get acquainted with the quantum world, we are shrunk to the size of an atom and then taken on a journey. Employing everyday similes and metaphors, addressing the reader directly, and writing stories rather than equations renders these astoundingly complex ideas in an immediate and visceral way. Utterly captivating and entirely unique, The Universe in Your Hand will find its place among other classics in the field.
The most accessible guide to quantum physics there is, from the New Scientist cosmology correspondent.
Frank Wilczek is one of the foremost theoretical physicists of the past half-century. He has made several fundamental contributions that shape our understanding of high energy physics, cosmology, condensed matter physics, and statistical physics. In all these fields his many discoveries continue to play a key role in shaping the direction of modern theoretical physics.Among Wilczek's major achievements is the discovery of asymptotic freedom, which predicts and explains the ultraviolet behavior of non-abelian gauge theories. The axion, which he co-discovered and named, has emerged as the prevalent candidate for explaining the origin of dark matter in the Universe. His invention of color-flavor locking explains chiral symmetry breaking in high density quantum chromodynamics. His introduction of fractional statistics and anyons are pivotal to our understanding of the fractional quantum Hall effect and form the building blocks of topological quantum computing. His invention of the time crystal concept has catalyzed extensive investigations of dynamical phases of physical systems.Frank Wilczek received the 2004 Nobel Prize in Physics for the discovery of asymptotic freedom. He is also the recipient of several Prizes and honorary awards including the MacArthur Fellowship, the Lorentz Medal of the Royal Netherlands Academy of Arts and Sciences, the Lilienfeld Prize of the American Physical Society, the High Energy and Particle Physics Prize of the European Physical Society, and the King Faisal International Prize for Science of the King Faisal Foundation. He is a member of the National Academy of Sciences, American Academy of Arts and Sciences, and the American Philosophical Society. He is also a foreign member of the Royal Netherlands Academy of Arts and Sciences and of the Royal Academy of Sciences in Sweden.He is currently the Herman Feshbach Professor of Physics at MIT Center for Theoretical Physics. He also holds a professorship at Stockholm University, is a Distinguished Professor at Arizona State University, and is the founding director of the Tsung-Dao Lee Institute and Chief Scientist of the Wilczek Quantum Center at Shanghai Jiao Tong University.This volume serves as a tribute to Frank Wilczek's legendary scientific contributions, commemorating his 70th birthday and the first 50 years of his career as a theoretical physicist. The contributors include several of his PhD students, close collaborators, and both past and present colleagues.
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
A mind-bending journey through some of the most weird and wonderful facts about our universe, vividly illuminating the hidden truths that govern our everyday lives. Fact: You could fit the whole human race in the volume of a sugar cube. Fact: The electrical energy in a single mosquito is enough to cause a global mass extinction. Fact: You age more quickly on the top floor than on the ground floor. So much of our world seems to make perfect sense, and scientific breakthroughs have helped us understand ourselves, our planet, and our place in the universe in fascinating detail. But our adventures in space, our deepening understanding of the quantum world, and our leaps in technology have also revealed a universe far stranger than we ever imagined. With brilliant clarity and wit, bestselling author Marcus Chown examines the profound science behind fifty remarkable scientific facts that help explain the vast complexities of our existence. “The tone is consistently light and breezy...An addictive, intriguing, and entertaining read...A handy guide for anyone yearning to spice up their conversational skills.”—Booklist “Heavy stuff lightly spun―just the thing for the science buff in the house.”―Kirkus Review
A daring new vision of the quantum universe, and the scandals controversies, and questions that may illuminate our future--from Canada's leading mind on contemporary physics. Quantum physics is the golden child of modern science. It is the basis of our understanding of atoms, radiation, and so much else, from elementary particles and basic forces to the behaviour of materials. But for a century it has also been the problem child of science, plagued by intense disagreements between its intellectual giants, from Albert Einstein to Stephen Hawking, over the strange paradoxes and implications that seem like the stuff of fantasy. Whether it's Schrödinger's cat--a creature that is simultaneously dead and alive--or a belief that the world does not exist independently of our observations of it, quantum theory is what challenges our fundamental assumptions about our reality. In Einstein's Unfinished Revolution, globally renowned theoretical physicist Lee Smolin provocatively argues that the problems which have bedeviled quantum physics since its inception are unsolved for the simple reason that the theory is incomplete. There is more, waiting to be discovered. Our task--if we are to have simple answers to our simple questions about the universe we live in--must be to go beyond it to a description of the world on an atomic scale that makes sense. In this vibrant and accessible book, Smolin takes us on a journey through the basics of quantum physics, introducing the stories of the experiments and figures that have transformed the field, before wrestling with the puzzles and conundrums that they present. Along the way, he illuminates the existing theories about the quantum world that might solve these problems, guiding us toward his own vision that embraces common sense realism. If we are to have any hope of completing the revolution that Einstein began nearly a century ago, we must go beyond quantum mechanics as we know it to find a theory that will give us a complete description of nature. In Einstein's Unfinished Revolution, Lee Smolin brings us a step closer to resolving one of the greatest scientific controversies of our age.
A page-turning novel that is also an exploration of the great philosophical concepts of Western thought, Jostein Gaarder's Sophie's World has fired the imagination of readers all over the world, with more than twenty million copies in print. One day fourteen-year-old Sophie Amundsen comes home from school to find in her mailbox two notes, with one question on each: "Who are you?" and "Where does the world come from?" From that irresistible beginning, Sophie becomes obsessed with questions that take her far beyond what she knows of her Norwegian village. Through those letters, she enrolls in a kind of correspondence course, covering Socrates to Sartre, with a mysterious philosopher, while receiving letters addressed to another girl. Who is Hilde? And why does her mail keep turning up? To unravel this riddle, Sophie must use the philosophy she is learning—but the truth turns out to be far more complicated than she could have imagined.
Explains the fundamental concepts of Newtonian mechanics, special relativity, waves, fluids, thermodynamics, and statistical mechanics. Provides an introduction for college-level students of physics, chemistry, and engineering, for AP Physics students, and for general readers interested in advances in the sciences. In volume II, Shankar explains essential concepts, including electromagnetism, optics, and quantum mechanics. The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics.