Download Free Zinc Oxide Based Nano Materials And Devices Book in PDF and EPUB Free Download. You can read online Zinc Oxide Based Nano Materials And Devices and write the review.

This book presents a review of recent advances in ZnO-based nanomaterials and devices. ZnO as a nanomaterial has gained substantial interest in the research area of wide bandgap semiconductors and is considered to be one of the major candidates for electronic and photonic applications. ZnO has distinguished and interesting electrical and optical properties and is considered to be a potential material in optoelectronic applications such as solar cells, surface acoustic wave devices, and UV emitters. ZnO's unique properties have attracted several researchers to study its electrical and optical properties. As a nanostructured material, ZnO exhibits many advantages for nanodevices. Moreover, it has the ability to absorb the UV radiation.
Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors
Through their application in energy-efficient and environmentally friendly devices, zinc oxide (ZnO) and related classes of wide gap semiconductors, including GaN and SiC, are revolutionizing numerous areas, from lighting, energy conversion, photovoltaics, and communications to biotechnology, imaging, and medicine. With an emphasis on engineering a
Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100 C) and low-temperature (under
Introducing the fields of nanomaterials and devices, and their applications across a wide range of academic disciplines and industry sectors, Donglu Shi bridges knowledge acquisition and practical work, providing a starting point for the research and development of applications. The book describes characterization of nanomaterials, their preparation methods and performance testing techniques; the design and development of nano-scale devices; and the applications of nanomaterials, with examples taken from different industry sectors, such as lighting, energy, bioengineering and medicine / medical devices. Key nanomaterial types are covered, such as carbon nanotubes, nanobiomaterials, nano-magnetic materials, semiconductor materials and nanocomposites. Shi also provides detailed coverage of key emerging technologies such as DNA nanotechnology and spintronics. The resulting text is equally relevant for advanced students (senior and graduate) and for engineers and scientists from a variety of different academic backgrounds working in the multi-disciplinary field of nanotechnology. - Provides detailed guidance for the characterization of nanomaterials, their preparation, and performance testing - Explains the principles and challenges of the design and development of nano-scale devices - Explores applications through cases taken from a range of different sectors, including electronics, energy and medicine.
This first systematic, authoritative and thorough treatment in one comprehensive volume presents the fundamentals and technologies of the topic, elucidating all aspects of ZnO materials and devices. Following an introduction, the authors look at the general properties of ZnO, as well as its growth, optical processes, doping and ZnO-based dilute magnetic semiconductors. Concluding sections treat bandgap engineering, processing and ZnO nanostructures and nanodevices. Of interest to device engineers, physicists, and semiconductor and solid state scientists in general.
Zinc-Based Nanostructures for Environmental and Agricultural Applications shows how zinc nanostructures are being used in agriculture, food and the environment. The book has been divided into two parts: Part I deals with the synthesis and characterization of zinc-based nanostructures such as biogenic, plant, microbial, and actinobacteria mediated synthesis of zinc nanoparticles, Part II is focused on agri-food applications such as antibacterial, antifungal, antimicrobial, plant disease management, controlling post-harvest diseases, pesticide sensing and degradations, plant promotions, ZnO nanostructure for food packaging application, safe animal food and feed supplement, elimination of mycotoxins, and veterinary applications. Part III reviews technological developments in environmental applications such as risks and benefits for aquatic organisms and the marine environment, antiseptic activity and toxicity mechanisms, wastewater treatment, and zinc oxide-based nanomaterials for photocatalytic degradation of environmental and agricultural pollutants. The book discusses various aspects, including the application of zinc-based nanostructures to enhance plant health and growth, the effect on soil microbial activity, antimicrobial mechanism, phytotoxicity and accumulation in plants, the possible impact of zinc-based nanostructures in the agricultural sector as nanofertilizer, enhancing crop productivity, and other possible antimicrobial mechanisms of ZnO nanomaterials. - Explores the impact of a large variety of zinc-based nanostructures on agri-food and environment sectors - Outlines how the properties of zinc-based nanostructures mean they are particularly efficient in environmental and agricultural application areas - Assesses the major challenges of synthesizing and processing zinc-based nanostructured materials
This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.
The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use
This edited book, Toxicology - New Aspects to This Scientific Conundrum, is intended to provide an overview on the different xenobiotics employed every day in our anthropogenic activities. We hope that this book will continue to meet the expectations and needs of all interested in the implications for the living species of known and new toxicants and to guide them in the future investigations.