Download Free Zhang Time Discretization Ztd Formulas And Applications Book in PDF and EPUB Free Download. You can read online Zhang Time Discretization Ztd Formulas And Applications and write the review.

This book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas. The authors summarize and present the systematic derivations and complete research of ZTD formulas from special 3S-ZTD formulas to general NS-ZTD formulas. These finally lead to their proposed discrete-time Zhang neural network (DTZNN) algorithms, which are more efficient, accurate, and elegant. This book will open the door to scientific and engineering applications of ZTD formulas and neural networks, and will be a major inspiration for studies in neural network modeling, numerical algorithm design, prediction, and robot manipulator control. The book will benefit engineers, senior undergraduates, graduate students, and researchers in the fields of neural networks, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, robotics, and simulation modeling.
The book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas. The authors summarize and present the systematic derivations and complete researches of ZTD formulas from special 3S-ZTD formulas to general NS-ZTD formulas. These finally lead to their proposed discrete-time Zhang neural network (DTZNN) algorithms, which are more efficient, accurate, and elegant. The book will open the door to scientific and engineering applications of ZTD formulas and neural networks, and will be a major inspiration for studies in neural network modeling, numerical algorithm design, prediction, and robot manipulator control. The book will benefit engineers, senior undergraduates, graduate students, and researchers in the fields of neural networks, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, robotics, and simulation modeling.
This book introduces readers to using the simple but effective Zhang-gradient (ZG) method to solve tracking-control problems concerning various nonlinear systems, while also highlighting the applications of the ZG method to tracking control for practical systems, e.g. an inverted-pendulum-on-a-cart (IPC) system and a two-wheeled mobile robot (showing its potential applications). In addition to detailed theoretical analyses of ZG controllers, the book presents a wealth of computer simulations to demonstrate the feasibility and efficacy of the controllers discussed (as well as the method itself). More importantly, the superiority of ZG controllers in overcoming the division-by-zero (DBZ) problem is also illustrated. Given its scope and format, the book is well suited for undergraduate and graduate students, as well as academic and industrial researchers in the fields of neural dynamics/neural networks, nonlinear control, computer mathematics, time-varying problem solving, modeling and simulation, analog hardware, and robotics.
While Americans are generally aware of China's ambitions as a global economic and military superpower, few understand just how deeply and assertively that country has already sought to influence American society. As the authors of this volume write, it is time for a wake-up call. In documenting the extent of Beijing's expanding influence operations inside the United States, they aim to raise awareness of China's efforts to penetrate and sway a range of American institutions: state and local governments, academic institutions, think tanks, media, and businesses. And they highlight other aspects of the propagandistic “discourse war” waged by the Chinese government and Communist Party leaders that are less expected and more alarming, such as their view of Chinese Americans as members of a worldwide Chinese diaspora that owes undefined allegiance to the so-called Motherland.Featuring ideas and policy proposals from leading China specialists, China's Influence and American Interests argues that a successful future relationship requires a rebalancing toward greater transparency, reciprocity, and fairness. Throughout, the authors also strongly state the importance of avoiding casting aspersions on Chinese and on Chinese Americans, who constitute a vital portion of American society. But if the United States is to fare well in this increasingly adversarial relationship with China, Americans must have a far better sense of that country's ambitions and methods than they do now.
Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.
The definitive reference on electromagnetic shielding materials, configurations, approaches, and analyses This reference provides a comprehensive survey of options for the reduction of the electromagnetic field levels in prescribed areas. After an introduction and an overview of available materials, it discusses figures of merit for shielding configurations, the shielding effectiveness of stratified media, numerical methods for shielding analyses, apertures in planar metal screens, enclosures, and cable shielding. Up to date and comprehensive, Electromagnetic Shielding: Explores new and innovative techniques in electromagnetic shielding Presents a critical approach to electromagnetic shielding that highlights the limits of formulations based on plane-wave sources Analyzes aspects not normally considered in electromagnetic shielding, such as the effects of the content of the shielding enclosures Includes references at the end of each chapter to facilitate further study The last three chapters discuss frequency-selective shielding, shielding design procedures, and uncommon ways of shielding—areas ripe for further research. This is an authoritative, hands-on resource for practicing telecommunications and electrical engineers, as well as researchers in industry and academia who are involved in the design and analysis of electromagnetic shielding structures.
This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​
Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.
Introduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century. An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems. Provides a fully connected, systematic, methodological, consecutive, and easy approach to solving redundancy resolution problems Describes a new approach to the time-varying Jacobian matrix pseudoinversion, applied to the redundant-manipulator kinematic control Introduces The QP-based unification of robots' redundancy resolution Illustrates the effectiveness of the methods presented using a large number of computer simulation results based on PUMA560, PA10, and planar robot manipulators Provides technical details for all schemes and solvers presented, for readers to adopt and customize them for specific industrial applications Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.
Authored by leading international researchers, this monograph introduces and reviews developed tomograhic methods for discovering 2D and 3D structures of the ionosphere, and discusses the experimental implementation of these methods. The detailed derivations and explanations make this book an excellent starting point for non-specialists.