Download Free Zeta Functions Of Reductive Groups And Their Zeros Book in PDF and EPUB Free Download. You can read online Zeta Functions Of Reductive Groups And Their Zeros and write the review.

This book provides a systematic account of several breakthroughs in the modern theory of zeta functions. It contains two different approaches to introduce and study genuine zeta functions for reductive groups (and their maximal parabolic subgroups) defined over number fields. Namely, the geometric one, built up from stability of principal lattices and an arithmetic cohomology theory, and the analytic one, from Langlands' theory of Eisenstein systems and some techniques used in trace formula, respectively. Apparently different, they are unified via a Lafforgue type relation between Arthur's analytic truncations and parabolic reductions of Harder-Narasimhan and Atiyah-Bott. Dominated by the stability condition and/or the Lie structures embedded in, these zeta functions have a standard form of the functional equation, admit much more refined symmetric structures, and most surprisingly, satisfy a weak Riemann hypothesis. In addition, two levels of the distributions for their zeros are exposed, i.e. a classical one giving the Dirac symbol, and a secondary one conjecturally related to GUE.This book is written not only for experts, but for graduate students as well. For example, it offers a summary of basic theories on Eisenstein series and stability of lattices and arithmetic principal torsors. The second part on rank two zeta functions can be used as an introduction course, containing a Siegel type treatment of cusps and fundamental domains, and an elementary approach to the trace formula involved. Being in the junctions of several branches and advanced topics of mathematics, these works are very complicated, the results are fundamental, and the theory exposes a fertile area for further research.
Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation.
In this text, the famous zeros of the Riemann zeta function and its generalizations (L-functions, Dedekind and Selberg zeta functions)are analyzed through several zeta functions built over those zeros.
This volume contains papers by invited speakers of the symposium "Zeta Functions, Topology and Quantum Physics" held at Kinki U- versity in Osaka, Japan, during the period of March 3-6, 2003. The aims of this symposium were to establish mutual understanding and to exchange ideas among researchers working in various fields which have relation to zeta functions and zeta values. We are very happy to add this volume to the series Developments in Mathematics from Springer. In this respect, Professor Krishnaswami Alladi helped us a lot by showing his keen and enthusiastic interest in publishing this volume and by contributing his paper with Alexander Berkovich. We gratefully acknowledge financial support from Kinki University. We would like to thank Professor Megumu Munakata, Vice-Rector of Kinki University, and Professor Nobuki Kawashima, Director of School of Interdisciplinary Studies of Science and Engineering, Kinki Univ- sity, for their interest and support. We also thank John Martindale of Springer for his excellent editorial work.
The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.
The original zeta function was studied by Riemann as part of his investigation of the distribution of prime numbers. Other sorts of zeta functions were defined for number-theoretic purposes, such as the study of primes in arithmetic progressions. This led to the development of $L$-functions, which now have several guises. It eventually became clear that the basic construction used for number-theoretic zeta functions can also be used in other settings, such as dynamics, geometry, and spectral theory, with remarkable results. This volume grew out of the special session on dynamical, spectral, and arithmetic zeta functions held at the annual meeting of the American Mathematical Society in San Antonio, but also includes four articles that were invited to be part of the collection. The purpose of the meeting was to bring together leading researchers, to find links and analogies between their fields, and to explore new methods. The papers discuss dynamical systems, spectral geometry on hyperbolic manifolds, trace formulas in geometry and in arithmetic, as well as computational work on the Riemann zeta function. Each article employs techniques of zeta functions. The book unifies the application of these techniques in spectral geometry, fractal geometry, and number theory. It is a comprehensive volume, offering up-to-date research. It should be useful to both graduate students and confirmed researchers.
Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do CearĂ¡, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spaces.