Download Free Zeolite Characterization And Catalysis Book in PDF and EPUB Free Download. You can read online Zeolite Characterization And Catalysis and write the review.

The idea for putting together a tutorial on zeolites came originally from my co-editor, Eric Derouane, about 5 years ago. I ?rst met Eric in the mid-1980s when he spent 2 years working for Mobil R&D at our then Corporate lab at Princeton, NJ. He was on the senior technical staff with projects in the synthesis and characterization of new materials. At that time, I managed a group at our Paulsboro lab that was responsible for catalyst characterization in support of our catalyst and process development efforts, and also had a substantial group working on new material synthesis. Hence, our interests overlapped considerably and we met regularly. After Eric moved back to Namur (initially), we maintained contact, and in the 1990s, we met a number of times in Europe on projects of joint interest. It was after I retired from ExxonMobil in 2002 that we began to discuss the tutorial concept seriously. Eric had (semi-)retired and lived on the Algarve, the southern coast of Portugal. In January 2003, my wife and I spent 3 weeks outside of Lagos, and I worked parts of most days with Eric on the proposed content of the book. We decided on a comprehensive approach that ultimately amounted to some 20+ chapters covering all of zeolite chemistry and catalysis and gave it the title Zeolite Chemistry and Catalysis: An integrated Approach and Tutorial.
Zeolites occur in nature and have been known for almost 250 years as alumino silicate minerals. Examples are clinoptilolite, mordenite, offretite, ferrierite, erionite and chabazite. Today, most of these and many other zeolites are of great interest in heterogeneous catalysis, yet their naturally occurring forms are of limited value as catalysts because nature has not optimized their properties for catalytic applications and the naturally occurring zeolites almost always contain undesired impurity phases. It was only with the advent of synthetic zeolites in the period from about 1948 to 1959 (thanks to the pioneering work of R. M. Barrer and R. M. Milton) that this class of porous materials began to playa role in catalysis. A landmark event was the introduction of synthetic faujasites (zeolite X at first, zeolite Y slightly later) as catalysts in fluid catalytic cracking (FCC) of heavy petroleum distillates in 1962, one of the most important chemical processes with a worldwide capacity of the order of 500 million t/a. Compared to the previously used amorphous silica-alumina catalysts, the zeolites were not only orders of magnitude more active, which enabled drastic process engineering improvements to be made, but they also brought about a significant increase in the yield of the target product, viz. motor gasoline. With the huge FCC capacity worldwide, the added value of this yield enhancement is of the order of 10 billion US $ per year.
Catalysis and catalyst is a key technology to solve the problems in energy and environment issues to sustain our human society. We believe that comprehensive understanding of the catalysis and catalyst provides us a chance to develop a new catalyst and contributes greatly to our society. However, the ?eld of heterogeneous catalyst is dif?cultto study andstill stays behindmoredeveloped?elds ofchemistry such as organic and physical chemistries. This is a dilemma to the chemists who study the catalysis and catalyst. While we can accomplish the progress in the - dustrial application, the scienti?c understandingis not complete yet. A gap between the useful application and incomplete scienti?c understanding, however, becomes smaller and smaller in recent years. Because zeolites are ?ne crystals, and the structure is clearly known, the study on the catalysis using the zeolites is easier than those encountered in other catalysts such as metals and metal oxides. Very fortunately, zeolites provide us the strong acidity with the ?ne distribution which enables various useful catalytic reactions. When some metals and cations are loaded in close to the acid sites, these loadede- ments show extraordinarycharacters, and many catalytic reactions proceed thereon.
This indispensable two-volume handbook covers everything on this hot research field. The first part deals with the synthesis, modification, characterization and application of catalytic active zeolites, while the second focuses on such reaction types as cracking, hydrocracking, isomerization, reforming and other industrially important topics. Edited by a highly experienced and internationally renowned team with chapters written by the "Who's Who" of zeolite research.
Zeolites and Zeolite-like Materials offers a comprehensive and up-to-date review of the important areas of zeolite synthesis, characterization, and applications. Its chapters are written in an educational, easy-to-understand format for a generation of young zeolite chemists, especially those who are just starting research on the topic and need a reference that not only reflects the current state of zeolite research, but also identifies gaps and opportunities. The book demonstrates various applications of zeolites in heterogeneous catalysis and biomass conversion and identifies the endless possibilities that exist for this class of materials, their structures, functions, and future applications. In addition, it demonstrates that zeolite-like materials should be regarded as a living body developing towards new modern applications, thereby responding to the needs of modern technology challenges, including biomass conversion, medicine, laser techniques, and nanomaterial design, etc. The book will be of interest not only to zeolite-focused researchers, but also to a broad scientific and non-scientific audience. Provides a comprehensive review of the literature pertaining to zeolites and zeolite-like materials since 2000 Covers the chemistry of novel zeolite-like materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), hierarchical zeolite materials, new mesoporous and composite zeolite-like micro/mesoporous materials Presents essential information of the new zeolite-like structures, with a balanced coverage of the most important areas of the zeolite research (synthesis, characterization, adsorption, catalysis, new applications of zeolites and zeolite-like materials) Contains chapters prepared by known specialists who are members of the International Zeolite Association
This book is devoted to the new development of zeolitic catalysts with an emphasis on new strategies for the preparation of zeolites, novel techniques for their characterization and emerging applications of zeolites as catalysts for sustainable chemistry, especially in the fields of energy, biomass conversion and environmental protection. Over the years, energy and the environment have become the most important global issues, while zeolitic catalysts play important roles in addressing them. With individual chapters written by leading experts, this book offers an essential reference work for researchers and professionals in both academia and industry. Feng-Shou Xiao is a Professor at the Department of Chemistry, Zhejiang University, China. Xiangju Meng is an Associate Professor at the Department of Chemistry, Zhejiang University, China.
This first book to offer a practical overview of zeolites and their commercial applications provides a practical examination of zeolites in three capacities. Edited by a globally recognized and acclaimed leader in the field with contributions from major industry experts, this handbook and ready reference introduces such novel separators as zeolite membranes and mixed matrix membranes. The first part of the book discusses the history and chemistry of zeolites, while the second section focuses on separation processes. The third and final section treats zeolites in the field of catalysis. The three sections are unified by an examination of how the unique properties of zeolites allow them to function in different capacities as an adsorbent, a membrane and as a catalyst, while also discussing their impact within the industry.
Accessible references for researchers and industrialists in this exciting field, covering both developments and applications of catalysis.
The proceedings of this zeolite scientific meeting reflect the growing drive to discover new materials. It is evident that zeolite materials science is in a post-ZSM-5 period - pushed by a massive expansion of new compositions and topologies, and the application of new scientific tools. Four new zeolite topologies were detailed at this meeting. Important new trends were the resurgence of interest in computational and theoretical approaches to explain synthesis, sorption and catalytic data, and the increasing use of NMR and high-resolution imaging.