Download Free Z Pinch Drivers For Shock Physics Research Book in PDF and EPUB Free Download. You can read online Z Pinch Drivers For Shock Physics Research and write the review.

The recent development of Z pinch drivers for producing intense radiation envkomn~ enables study of physical and mechanical properties of condensed materials in regimes previously inaccessible in the Mm-am-y. With Z pinch radiation sources, it is possible fo subject mm-sized sampies to pianar compressions of a fe w Mbar. Tie-resolved velocity interferometry was used to perform the first shock loading and unloading profiles in Al and Be for ablatively driven shock$s to 3 Mbar and the first iseritropic loading of iron specimens to 300 War. A principai goai of our shock physics program is to establish a capability to make accurats eqwion of state measurements on the Z pulsed radiation source. The Z accelerator is a source of intense radntion, which can be used to drive ablative shocks for E(X$ studies. With this source, ablative muki-Mbar shocks can be produced to study materials over the range of interest to both weapons and ICF physics programs. In developing the capability to diagnose these types of studies on Z, techniques commonly used in conventional impact generated experiments were implemented. The primary diagnostic presently being used for this work is ve"!ocity interferoinetry, VL%4R, [2] which not only provides Hugoniot particle velocity measurements, but also measurements of non-shock EOS measummenu, such as isentropic compression. In addition to VKSAR capability, methods for measuring shock velocity have also been developed for shock studies on Z. When used in conjunction with the Rankine-Hugoniot jump conditions, material response at high temperatures and pressures can be inferred. The next section discusses the basic approach for conducting EOS experiments on Z for both shock loading and istmtropic compression on the Z accelerator.
The thesis represents the development of an entirely new experimental platform for generating and studying converging radiative shock waves. It was discovered that the application of large magnetic pressures to gas-filled cylindrical metallic tubes could sequentially produce three shocks within the gas. A comprehensive set of instrumentation was devised to explore this system in detail and an exceptionally thorough experimental and theoretical study was carried out in order to understand the source of the shock waves and their dynamics. The research is directed towards some of the most interesting topics in high energy density physics (HEDP) today, namely the interaction of HED material with radiation and magnetic fields, with broad applications to inertial confinement fusion (ICF) and laboratory plasma astrophysics. The work has already generated significant international interest in these two distinct research areas and the results could have significant importance for magnetic ICF concepts being explored at Sandia National Laboratories in the US and for our understanding of the very strong shock waves that are ubiquitous in astrophysics.
A "z pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that confines the plasma. Z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z pinches and includes many recent experimental results.
The generation of megagauss fields for science and technology is an exciting area at the extremes of parameter space, involving the application and controlled handling of extremely high power and energy densities in small volumes and on short time scales. New physical phenomena, technological challenges, and the selection and development of materials, together create a unique potential and synergy resulting in fascinating discoveries and achievements.This book is a collection of the contributions of an international conference, which assembled the leading scientists and engineers worldwide working on the generation and use of the strongest magnetic fields possible. Other research activities include generators that employ explosives to create ultra-high pulsed power for different applications, such as megavolt or radiation sources. Additional topics are the generation of plasmas and magnetized plasmas for fusion, imploding liners, rail guns, etc.
In this paper, we will discuss the use of z-pinch sources for shock wave studies at multi-Mbar pressures. Experimental plans to use the technique for absolute shock Hugoniot measurements are discussed. Recent developments have demonstrated the use of pulsed power techniques for producing intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions significantly larger than possible with other radiation sources. Initial indications are that using Z pinch sources for producing Planckian radiation sources in secondary hohlraums can be used to drive shock waves in samples with diameters to a few millimeters and thickness approaching one millimeter in thickness. These dimensions provides the opportunity to measure both shock velocity and the particle velocity behind the shock front with accuracy comparable to that obtained with gun launchers. In addition, the peak hohlraum temperatures of nearly 150 eV that are now possible with Z pinch sources result in shock wave pressures approaching 45 Mbar in high impedance materials such as tungsten and 10-15 Mbar in low impedance materials such as aluminum and plastics. In this paper, we discuss the use of Z pinch sources for making accurate absolute EOS measurements in the megabar pressure range.
The outline of the issues discussed at the Third IAEA Technical Meeting on Physics and Technology of Inertial Fusion Energy Targets, Chambers and Drivers are summarized in this publication. It is expected that new megajoule laser facilities will demonstrate fusion ignition and burn, and, in around 2010-2015, gain of energy.
Plasma Physics