Download Free Yns Polarizations Versus Particle Multiplicity In Pp Collisions At Book in PDF and EPUB Free Download. You can read online Yns Polarizations Versus Particle Multiplicity In Pp Collisions At and write the review.

The polarizations of the Y(1S), Y(2S), and Y(3S) mesons are measured as a function of the charged particle multiplicity in proton-proton collisions at sqrt(s) = 7 TeV. The measurements are performed with a dimuon data sample collected in 2011 by the CMS experiment, corresponding to an integrated luminosity of 4.9 inverse femtobarns. The results are extracted from the dimuon decay angular distributions, in two ranges of Y(nS) transverse momentum (10-15 and 15-35 GeV), and in the rapidity interval abs(y)
The polarizations of the Y(1S), Y(2S), and Y(3S) mesons are measured as a function of the charged particle multiplicity in proton-proton collisions at √s = 7 TeV. The measurements are performed with a dimuon data sample collected in 2011 by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb–1. The results are extracted from the dimuon decay angular distributions, in two ranges of Y(nS) transverse momentum (10-15 and 15-35 GeV), and in the rapidity interval.
A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.
If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untouched due to the large numbers of electrons involved. Almost the entire class of molecules of real biological interest is simply out of the question. In general, the theoretician is reduced to model systems of variable appositeness in most of these fields. The fundamental problem, from a basic computational point of view, is that large molecules require large numbers of basis functions, whether Slater type orbitals or Gaussian functions suitably contracted, to provide even a modestly accurate description of the molecular electronic environment. This leads to the necessity of dealing with very large matrices and numbers of integrals within the Hartree-Fock approximation and quickly becomes both numerically difficult and uneconomic.