Download Free Yang Mills Connections On Orientable And Nonorientable Surfaces Book in PDF and EPUB Free Download. You can read online Yang Mills Connections On Orientable And Nonorientable Surfaces and write the review.

In ``The Yang-Mills equations over Riemann surfaces'', Atiyah and Bott studied Yang-Mills functional over a Riemann surface from the point of view of Morse theory. In ``Yang-Mills Connections on Nonorientable Surfaces'', the authors study Yang-Mills functional on the space of connections on a principal $G_{\mathbb{R}}$-bundle over a closed, connected, nonorientable surface, where $G_{\mathbb{R}}$ is any compact connected Lie group. In this monograph, the authors generalize the discussion in ``The Yang-Mills equations over Riemann surfaces'' and ``Yang-Mills Connections on Nonorientable Surfaces''. They obtain explicit descriptions of equivariant Morse stratification of Yang-Mills functional on orientable and nonorientable surfaces for non-unitary classical groups $SO(n)$ and $Sp(n)$.
The Ahlfors-Bers Colloquia commemorate the mathematical legacy of Lars Ahlfors and Lipman Bers. The core of this legacy lies in the fields of geometric function theory, Teichmuller theory, hyperbolic geometry, and partial differential equations. However,
Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, the authors study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, they use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.
"March 2010, Volume 204, number 961 (end of volume)."
The author develops a non-abelian version of $p$-adic Hodge Theory for varieties (possibly open with ``nice compactification'') with good reduction. This theory yields in particular a comparison between smooth $p$-adic sheaves and $F$-isocrystals on the level of certain Tannakian categories, $p$-adic Hodge theory for relative Malcev completions of fundamental groups and their Lie algebras, and gives information about the action of Galois on fundamental groups.
This memoir is a refinement of the author's PhD thesis -- written at Cornell University (2006). It is primarily a desription of new research but also includes a substantial amount of background material. At the heart of the memoir the author introduces and studies a poset $NC^{(k)}(W)$ for each finite Coxeter group $W$ and each positive integer $k$. When $k=1$, his definition coincides with the generalized noncrossing partitions introduced by Brady and Watt in $K(\pi, 1)$'s for Artin groups of finite type and Bessis in The dual braid monoid. When $W$ is the symmetric group, the author obtains the poset of classical $k$-divisible noncrossing partitions, first studied by Edelman in Chain enumeration and non-crossing partitions.
This memoir attempts at a systematic study of convergence to stationary state for certain classes of degenerate diffusive equations, taking the general form ${\frac{\partial f}{\partial t}}+ L f =0$. The question is whether and how one can overcome the degeneracy by exploiting commutators.
"July 2011, volume 212, number 996 (first of 4 numbers)."
"Volume 205, number 962 (first of 5 numbers)."
For a given plane domain, the author adds a constant multiple of the Dirac measure at a point in the domain and makes a new domain called a quadrature domain. The quadrature domain is characterized as a domain such that the integral of a harmonic and integrable function over the domain equals the integral of the function over the given domain plus the integral of the function with respect to the added measure. The family of quadrature domains can be modeled as the Hele-Shaw flow with a free-boundary problem. The given domain is regarded as the initial domain and the support point of the Dirac measure as the injection point of the flow.