Download Free X Ray Sources And Optics Book in PDF and EPUB Free Download. You can read online X Ray Sources And Optics and write the review.

X-ray optics is undergoing a renaissance, which may be paralleled to that experienced by visible-light optics following the invention of the laser. The associated surge of activity in "coherent" x-ray optics has been documented in this monograph, the first of its type in the field.
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems
The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.
Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.
Gives an up-to-date summary of X-ray source design for applications in modern diagnostic medical imaging. Lays a sound groundwork for education and advanced training in the physics of X-ray production and X-ray interactions with matter. Includes a historical overview of X-ray tube and generator development, including key achievements leading up to the current technological and economic state of the field.
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
X-ray astronomy is the prime available window on astrophysical compact objects: black holes, neutron stars and white dwarfs. In this book, prominent experts provide a comprehensive overview of the observations and astrophysics of these objects. This is a valuable reference for graduate students and active researchers.
Over the past 20 years, synchrotron-based research applications have provided important insight into the geochemical cycling of ions and the chemical and crystallographic properties of minerals in soils and sediments. Of particular significance is the understanding of local coordination environments with the use of X-ray absorption spectroscopy. The high flux and brightness of the X-ray beams have allowed researchers to work at environmentally relevant concentrations. The use of focusing mirrors and apertures which allow for mapping and trace particle surfaces, microbes, roots, channels and elements at the micron and at a nano-meter scale in 2 and 3D have also been a great enhancement to science. This book provides the most up-to-date information on synchrotron-based research applications in the field of soil, sediment and earth sciences. Invited authors provide chapters on a wide range of research topics including multiphase flow and transport processes (physical aspects), rhizosphere and microbial life (biological aspects), and dynamics of C, N, S, P and heavy metals and metalloids (chemical aspects). In addition, perspectives on the impact of synchrotron based applications, particularly X-ray absorption spectroscopy, and the role of synchrotron applications in remediation, regulatory, and decision making processes are considered. - Up-to-date, with the latest research results and techniques in synchrotron-based techniques - Information on specific techniques, elements and minerals, regulatory and remediation decision making, contaminants and the impact of X-ray absorption spectroscopy on soil science - Internationally recognized leaders in their fields of expertise from Europe, North America, Asia and Australia
Master the physics and understand the current applications of modern X-ray and EUV sources with this fully updated second edition.