Download Free X Ray Diffraction By Polycrystalline Materials Book in PDF and EPUB Free Download. You can read online X Ray Diffraction By Polycrystalline Materials and write the review.

This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.
Elementary crystallography. The production and properties of X-rays. Fundamental principles of X-ray diffraction. Photographic powder techniques. Diffractometric powder technique. The interpretation of powder diffraction data. Qualitative and quantitative analysis of crystalline powders. The precision determination of lattice constants. Crystallite size and lattice strains from line broadening. Investigation of preferred orientation and texture. Stress measurements in metals. Radial-distribution studies of noncrystalline materials. Layout for a diffraction laboratory. The handling and processing of X-ray film. Miscellaneous constants and numerical data. International atomic weights. Mass absorption coefficients u/p of the elements (Z=1 to 83) for a selection of wavelenghts. Quadratic forms for the cubic system. Atomic and ionic scattering factors. Lorentz and polarization factors. Temperature factor table. Warren's powder pattern power theorem.
X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.
With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.
The book "Polycrystalline Materials - Theoretical and Practical Aspects" is focused on contemporary investigations of plastic deformation, strength and grain-scale approaches, methods of synthesis, structurals, properties, and application of some polycrystalline materials. It is intended for students, post-graduate students, and scientists in the field of polycrystalline materials.