Download Free Wrinkled Polymer Surfaces Book in PDF and EPUB Free Download. You can read online Wrinkled Polymer Surfaces and write the review.

This book presents the state of the art in surface wrinkling, including current and future potential applications in biomedicine, tissue engineering, drug delivery, microfluidic devices, and other promising areas. Their use as templates, flexible electronics, and supports with controlled wettability and/or adhesion for biorelated applications demonstrate how the unique characteristics of wrinkled interfaces play a distinguishing and remarkable role. The fabrication approaches employed to induce wrinkle formation and the potential to fine-tune the amplitude and period of the wrinkles, their functionality, and their final morphology are thoroughly described. An overview of the main applications in which these buckled interfaces have already been employed or may have an impact in the near future is included. Presents a detailed description of the physical phenomena and strategies occurring at polymer surfaces to produce wrinkled surface patterns; Examines the different methodologies to produce morphology-controlled wrinkled surface patterns by means of physical and chemical treatment methods; Provides clear information on current and potential applications in flexible electronics and biomaterials, which are leading the use of these materials.
This book presents the state of the art in surface wrinkling, including current and future potential applications in biomedicine, tissue engineering, drug delivery, microfluidic devices, and other promising areas. Their use as templates, flexible electronics, and supports with controlled wettability and/or adhesion for biorelated applications demonstrate how the unique characteristics of wrinkled interfaces play a distinguishing and remarkable role. The fabrication approaches employed to induce wrinkle formation and the potential to fine-tune the amplitude and period of the wrinkles, their functionality, and their final morphology are thoroughly described. An overview of the main applications in which these buckled interfaces have already been employed or may have an impact in the near future is included. Presents a detailed description of the physical phenomena and strategies occurring at polymer surfaces to produce wrinkled surface patterns; Examines the different methodologies to produce morphology-controlled wrinkled surface patterns by means of physical and chemical treatment methods; Provides clear information on current and potential applications in flexible electronics and biomaterials, which are leading the use of these materials.
Ch. 1. Block copolymer thin films / J.-Y. Wang, S. Park and T. P. Russell -- ch. 2. Equilibration of block copolymer films on chemically patterned surfaces / G. S. W. Craig, H. Kang and P. F. Nealey -- ch. 3. Structure formation and evolution in confined cylinder-forming block copolymers / G. J. A. Sevink and J. G. E. M. Fraaije -- ch. 4. Block copolymer lithography for magnetic device fabrication / J. Y. Cheng and C. A. Ross -- ch. 5. Hierarchical structuring of polymer nanoparticles by self-organization / M. Shimomura ... [et al.] -- ch. 6. Wrinkling polymers for surface structure control and functionality / E. P. Chan and A. J. Crosby -- ch. 7. Crystallization in polymer thin films: morphology and growth / R. M. Van Horn and S. Z. D. Cheng -- ch. 8. Friction at soft polymer surface / M. K. Chaudhury, K. Vorvolakos and D. Malotky -- ch. 9. Relationship between molecular architecture, large-strain mechanical response and adhesive performance of model, block copolymer-based pressure sensitive adhesives / C. Creton and K. R. Shull -- ch. 10. Stability and dewetting of thin liquid films / K. Jacobs, R. Seemann and S. Herminghaus -- ch. 11. Anomalous dynamics of polymer Films / O. K. C. Tsui.
Pattern formation is a fascinating and challenging aspect in polymer science. This book describes a number of unconventional approaches developed to control the morphology of polymer surfaces and materials, from random or simple patterns to complex structures. Specialists provide an up-to-date and complete overview of each technique in their respective field.
A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.
In 1974 when I published my book, Biological Mechanism of Attachment, not many pages were required to report on the attachment devices of insect cuticles. As in most fields of research, our knowledge on this specific subject has simply exploded. Dr. Stanislav N. Gorb now describes the present day level of our knowledge, to which he has personally contributed so much, and a research team working on biological microtribology has gradually developed, also. With modern methods of measurement it is possible to enter the structure – function relationship much more deeply, even down to a molecular level, which was not possible two and a half decades ago. It is a well known fact that, in biology, the more sophisticated the measuring method, the greater the achievement of biological fundamental research, and its resulting evidence. Our knowledge remains at a certain level until new methods once more permit a forward leap. Biological knowledge develops in the form of a stepped curve rather than linear, as reflected in the studies carried out on the attachment devices of insect cuticles.
This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.
This book introduces the techniques used for the analysis of polymers. It covers the main aspects of polymer science and technology; identification, polymerization, molecular weight, structure, surface properties, degradation and mechanical properties. * Clear explanations of each analytical technique * Describes the application of techniques to the study of polymers * Encourages learning through numerous self-assessment questions and answers * Structured for flexible learning
Shape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing. This book provides the latest advanced information of on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP. The basic fundamentals of SMP, including shape-memory mechanisms and mechanics are described. This will aid reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field. The book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well. This book should prove to be extremely useful for academics, R&D managers, researcher scientists, engineers, and all others related to the SMP research.