Download Free Workload Sensitive Timing Behavior Analysis For Fault Localization In Software Systems Book in PDF and EPUB Free Download. You can read online Workload Sensitive Timing Behavior Analysis For Fault Localization In Software Systems and write the review.

Software timing behavior measurements, such as response times, often show high statistical variance. This variance can make the analysis difficult or even threaten the applicability of statistical techniques. This thesis introduces a method for improving the analysis of software response time measurements that show high variance. Our approach can find relations between timing behavior variance and both trace shape information and workload intensity information. This relation is used to provide timing behavior measurements with virtually less variance. This can make timing behavior analysis more robust (e.g., improved confidence and precision) and faster (e.g., less simulation runs and shorter monitoring period). The thesis contributes TracSTA (Trace-Context-Sensitive Timing Behavior Analysis) and WiSTA (Workload-Intensity-Sensitive Timing Behavior Analysis). TracSTA uses trace shape information (i.e., the shape of the control flow corresponding to a software operation execution) and WiSTA uses workload intensity metrics (e.g., the number of concurrent software executions) to create context-specific timing behavior profiles. Both the applicability and effectiveness are evaluated in several case studies and field studies. The evaluation shows a strong relation between timing behavior and the metrics considered by TracSTA and WiSTA. Additionally, a fault localization approach for enterprise software systems is presented as application scenario. It uses the timing behavior data provided by TracSTA and WiSTA for anomaly detection.
Handbook of Software Fault Localization A comprehensive analysis of fault localization techniques and strategies In Handbook of Software Fault Localization: Foundations and Advances, distinguished computer scientists Prof. W. Eric Wong and Prof. T.H. Tse deliver a robust treatment of up-to-date techniques, tools, and essential issues in software fault localization. The authors offer collective discussions of fault localization strategies with an emphasis on the most important features of each approach. The book also explores critical aspects of software fault localization, like multiple bugs, successful and failed test cases, coincidental correctness, faults introduced by missing code, the combination of several fault localization techniques, ties within fault localization rankings, concurrency bugs, spreadsheet fault localization, and theoretical studies on fault localization. Readers will benefit from the authors’ straightforward discussions of how to apply cost-effective techniques to a variety of specific environments common in the real world. They will also enjoy the in-depth explorations of recent research directions on this topic. Handbook of Software Fault Localization also includes: A thorough introduction to the concepts of software testing and debugging, their importance, typical challenges, and the consequences of poor efforts Comprehensive explorations of traditional fault localization techniques, including program logging, assertions, and breakpoints Practical discussions of slicing-based, program spectrum-based, and statistics-based techniques In-depth examinations of machine learning-, data mining-, and model-based techniques for software fault localization Perfect for researchers, professors, and students studying and working in the field, Handbook of Software Fault Localization: Foundations and Advances is also an indispensable resource for software engineers, managers, and software project decision makers responsible for schedule and budget control.
This book constitutes the refereed proceedings of the SPEC International Performance Evaluation Workshop, SIPEW 2008, held in Darmstadt, Germany, in June 2008. The 17 revised full papers presented together with 3 keynote talks were carefully reviewed and selected out of 39 submissions for inclusion in the book. The papers are organized in topical sections on models for software performance engineering; benchmarks and workload characterization; Web services and service-oriented architectures; power and performance; and profiling, monitoring and optimization.
This IBM® Redbooks® publication addresses performance tuning topics to help leverage the virtualization strengths of the POWER® platform to solve clients' system resource utilization challenges, and maximize system throughput and capacity. We examine the performance monitoring tools, utilities, documentation, and other resources available to help technical teams provide optimized business solutions and support for applications running on IBM POWER systems' virtualized environments. The book offers application performance examples deployed on IBM Power SystemsTM utilizing performance monitoring tools to leverage the comprehensive set of POWER virtualization features: Logical Partitions (LPARs), micro-partitioning, active memory sharing, workload partitions, and more. We provide a well-defined and documented performance tuning model in a POWER system virtualized environment to help you plan a foundation for scaling, capacity, and optimization . This book targets technical professionals (technical consultants, technical support staff, IT Architects, and IT Specialists) responsible for providing solutions and support on IBM POWER systems, including performance tuning.
Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as flight performance, self protection and extended-life structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of electrical flight control system failures: oscillatory failure, runaway, and jamming. Advanced fault detection and diagnosis for linear and linear-parameter-varying systems are described. Lastly recovery strategies appropriate to remaining actuator/sensor/communications resources are developed. The authors exploit experience gained in research collaboration with academic and major industrial partners to validate advanced fault diagnosis and fault-tolerant control techniques with realistic benchmarks or real-world aeronautical and space systems. Consequently, the results presented in Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace, will be of interest in both academic and aerospatial-industrial milieux.