Download Free Wood Plastics Composites Wpc Characterisation Of Wpc Products Book in PDF and EPUB Free Download. You can read online Wood Plastics Composites Wpc Characterisation Of Wpc Products and write the review.

Wood, Plastics, Composite materials, Cellulose, Wood fibres, Thermoplastic polymers, Physical properties of materials, Mechanical properties of materials, Thermal properties of materials, Fire resistance, Durability, Roof decking, Cladding (buildings), Woodbased sheet materials
Wood, Plastics, Composite materials, Cellulose, Wood fibres, Thermoplastic polymers, Physical properties of materials, Mechanical properties of materials, Thermal properties of materials, Fire resistance, Durability
Wood, Plastics, Composite materials, Cellulose, Wood fibres, Thermoplastic polymers, Physical testing, Mechanical testing, Environmental testing, Thermal testing, Fire tests, Test specimens
Wood-polymer composites (WPC) are materials in which wood is impregnated with monomers that are then polymerised in the wood to tailor the material for special applications. The resulting properties of these materials, from lightness and enhanced mechanical properties to greater sustainability, has meant a growing number of applications in such areas as building, construction and automotive engineering. This important book reviews the manufacture of wood-polymer composites, how their properties can be assessed and improved and their range of uses.After an introductory chapter, the book reviews key aspects of manufacture, including raw materials, manufacturing technologies and interactions between wood and synthetic polymers. Building on this foundation, the following group of chapters discusses mechanical and other properties such as durability, creep behaviour and processing performance. The book concludes by looking at orientated wood-polymer composites, wood-polymer composite foams, at ways of assessing performance and at the range of current and future applications.With its distinguished editors and international team of contributors, Wood-polymer composites is a valuable reference for all those using and studying these important materials. Provides a comprehensive survey of major new developments in wood-polymer composites Reviews the key aspects of manufacture, including raw materials and manufacturing technologies Discusses properties such as durability, creep behaviour and processing performance
At present, the use of polymer composites filled with wood (WPC) is becoming increasingly popular. In particular, flooring of terraced premises, siding, decorative fences, fence systems, steps, universal profiles, among others are made from WPC. In 1977, the first enterprise for the production of WPC appeared in Sweden. The first experience was not very successful – the demand turned out to be low, and the wear of technological equipment was very high. Therefore, developments in this field were resumed only in the 1990s and continue to this day. This book describes the basic physical and mechanical properties of modern WPC, such as tensile and compression strength, and hardness. Also, the influence of climatic factors on the performance properties of products from WPC is described, while the thermal and rheological properties of WPC materials are considered, which directly affect the consumer characteristics of the products. The book contains theoretical developments related to the prediction of the mechanical and thermal properties of polymers and composites. The Van der Waals volume and the energy of the intermolecular interaction are estimated. This book will be of interest to representatives of the WPC market, designers, and architects, as well as technology engineers, students and post-graduate students of higher educational institutions in the fields of chemistry and physics of composite polymer materials.
Wood-plastic composite (WPC) is a non-recyclable composite material lumber or timber made of recycled plastic and wood wastes which has become one of the most dynamic sectors of the plastics industry in this decade. It is used in numerous applications, such as, outdoor deck floors, railings, fences, landscaping timbers, park benches, window and door frames. This book starts with a brief glimpse at the basic structures and properties of WPCs. Aspects such as surface treatment, machinery used and testing types of WPCs are also covered. The following chapters of the book give a view of foam technology, flame retardant properties and colour retardant properties of WPCs. The way morphology affects or controls the physical and mechanical behaviours of the finished materials is discussed. Finally, the authors give an overview of the applications of wood-plastic composites in daily life. The book may serve as a source book for scientists wishing to work in this field.
A comprehensive, practical guide to wood-plastic composites and their properties This is the first book that presents an overview of the main principles underlying the composition of wood-plastic composite (WPC) materials and their performance in the real world. Focusing on the characteristics of WPC materials rather than their manufacture, this guide bridges the gap between laboratory-based research and testing and the properties WPC materials exhibit when they're used in decks, railing systems, fences, and other common applications. Complete with practical examples and case studies, this guide: Describes compositions of WPC materials, including thermoplastics, cellulose fiber, minerals, additives, and their properties Covers mechanical properties, microbial resistance, water absorption, flammability, slip resistance, thermal expansion-contraction, sensitivity to oxidation and solar radiation, and rheological properties of hot melts of WPC Covers subjects that determine esthetics, properties, performance, and durability of wood-plastic composite products Includes comparisons of different ASTM methods and procedures that apply to specific properties This is a comprehensive, hands-on reference for scientists, engineers, and researchers working with wood-plastic composites in plastics and polymers, materials science, microbiology, rheology, plastic technology, and chemical engineering, as well as an outstanding text for graduate students in these disciplines. It's also an excellent resource for suppliers and WPC manufacturers, and an accessible guide for developers, homebuilders, and landscape architects who want to know more about wood-plastic composites and their performance in the real world.
This book provides complete information about wood plastic composite and also it's production and applications
Wood plastic composites (WPCs) are composite materials made from thermoplastic polymers, wood flour, and a small amount of process- and property-enhancing additives; they are principally used in the automotive industry and as secondary building materials. Although the WPC market is expected to keep growing, it is still relatively small when compared with other building materials. Challenges for increasing the market share of WPCs include relatively low tensile strength and stiffness, significant long-term creep deformations and weak creep rupture properties. A significant barrier to obtain better understanding of the composite performance and internal bond durability is the lack of reliable tools and procedures for direct quantitative measurement of the micro-mechanical response of this heterogeneous material. The objective of this study was to use advanced imaging tools, including X-ray computed tomography (CT) and conventional microscopy for quantitative morphological characterization of WPCs, with the focus on developing methodologies for reliable characterization of component phases and internal damage generated by accelerated weathering and cyclic loading. One of the primary concerns in X-ray CT scanning of WPCs is the poor contrast between the wood and polyethylene, which is the most common polymer for the WPC matrix. The objective of the first part of the thesis was to investigate the applicability of fine gold particles as contrast agent. Specifically, the effects of adding gold nano- and micro-particles, and commonly used surfactant on the mechanical properties of WPCs was assessed. Technically pure gold micro-particles was found to be an effective contrast agent for X-ray CT scanning of wood/HDPE composites. When used without surfactant, the addition of 1% gold particles did not impair the tensile properties of the composites. In order to establish effective experimental methodologies for morphological characterization of WPCs in the second part of the project, various imaging tools, including X-ray CT scanning, optical and electron microscopy were applied to examine wood particles embedded in the polymer matrix. Scans and images of uncompounded wood particles were used for reference. Such a combination of the imaging tools assisted in confirmation of the existence of an extensive wood/polymer interphase within the wood particles. Using the X-ray CT scanning, the combined volume of the interphase was quantitatively determined to be about 56% of the wood particle volume. This knowledge is critically needed for the proper assessment of the wood particle content from the CT scans. The third part of the thesis reports on a research which is not part of the original MS project, and is still in progress. This part was included to demonstrate how the conclusions and methods derived in the previous two parts are applied in further research. Here, the X-ray CT scanning technique is applied to examine the morphological changes in WPCs resulting from accelerated weathering treatment and cyclic loading. It was found that significant initial tensile modulus loss in wood/PVC composites may be induced by the relatively low number of accelerated soak-dry and freeze-thaw weathering cycles. Although no significant modulus loss was observed for the specimens subjected to cyclic tensile loading, the reduced residual strength indicated a significant damage accumulation. In summary, X-ray CT scanning was found to be a promising and effective nondestructive technique for 3D in situ examination and morphological characterization of WPCs. The experimental methodologies employing various imaging tools (including X-ray CT scanning and 2D microscopy) and digital image processing methods are capable of characterizing WPCs, its component phases and the interphase returning statistically meaningful quantitative data.