Download Free Women In Computational Intelligence Book in PDF and EPUB Free Download. You can read online Women In Computational Intelligence and write the review.

This book provides a breadth of innovative and impactful research in the field computational intelligence led by women investigators. Topics include intelligent data analytics, optimization of complex systems, approximation of human reasoning, robotic path planning, and intelligent control systems. These topics touch on many of the technological challenges facing the world today and these solutions by women researcher teams are valuable for their excellence and their non-traditional perspective. As an important part of the Women in Science and Engineering book series, the work highlights the contribution of women leaders in computational intelligence, inspiring women and men, girls, and boys to enter and apply themselves to this exciting multi-disciplinary field.
Sex and Gender Bias in Technology and Artificial Intelligence: Biomedicine and Healthcare Applications details the integration of sex and gender as critical factors in innovative technologies (artificial intelligence, digital medicine, natural language processing, robotics) for biomedicine and healthcare applications. By systematically reviewing existing scientific literature, a multidisciplinary group of international experts analyze diverse aspects of the complex relationship between sex and gender, health and technology, providing a perspective overview of the pressing need of an ethically-informed science. The reader is guided through the latest implementations and insights in technological areas of accelerated growth, putting forward the neglected and overlooked aspects of sex and gender in biomedical research and healthcare solutions that leverage artificial intelligence, biosensors, and personalized medicine approaches to predict and prevent disease outcomes. The reader comes away with a critical understanding of this fundamental issue for the sake of better future technologies and more effective clinical approaches. - First comprehensive title addressing the topic of sex and gender biases and artificial intelligence applications to biomedical research and healthcare - Co-published by the Women's Brain Project, a leading non-profit organization in this area - Guides the reader through important topics like the Generation of Clinical Data, Clinical Trials, Big Data Analytics, Digital Biomarkers, Natural Language Processing
'Football looked at in a very different way' Pat Nevin, former Chelsea and Everton star and football media analyst Football – the most mathematical of sports. From shot statistics and league tables to the geometry of passing and managerial strategy, the modern game is filled with numbers, patterns and shapes. How do we make sense of them? The answer lies in the mathematical models applied in biology, physics and economics. Soccermatics brings football and mathematics together in a mind-bending synthesis, using numbers to help reveal the inner workings of the beautiful game. This new and expanded edition analyses the current big-name players and teams using mathematics, and meets the professionals working inside football who use numbers and statistics to boost performance. Welcome to the world of mathematical modelling, expressed brilliantly by David Sumpter through the prism of football. No matter who you follow – from your local non-league side to the big boys of the Premiership, La Liga, the Bundesliga, Serie A or the MLS – you'll be amazed at what mathematics has to teach us about the world's favourite sport.
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Learn how Artificial Intelligence (AI) is being applied in the fashion industry. With an application focused approach, this book provides real-world examples, breaks down technical jargon for non-technical readers, and provides an educational resource for fashion professionals. The book investigates the ways in which AI is impacting every part of the fashion value chain starting with product discovery and working backwards to manufacturing. Artificial Intelligence for Fashion walks you through concepts, such as connected retail, data mining, and artificially intelligent robotics. Each chapter contains an example of how AI is being applied in the fashion industry illustrated by one major technological theme. There are no equations, algorithms, or code. The technological explanations are cumulative so you'll discover more information about the inner workings of artificial intelligence in practical stages as the book progresses. What You’ll Learn Gain a basic understanding of AI and how it is used in fashion Understand key terminology and concepts in AI Review the new competitive landscape of the fashion industry Conceptualize and develop new ways to apply AI within the workplaceWho This Book Is For Fashion industry professionals from designers, managers, department heads, and executives can use this book to learn about how AI is impacting roles in every department and profession.
This book examines the fundamentals and technologies of Artificial Intelligence (AI) and describes their tools, challenges, and issues. It also explains relevant theory as well as industrial applications in various domains, such as healthcare, economics, education, product development, agriculture, human resource management, environmental management, and marketing. The book is a boon to students, software developers, teachers, members of boards of studies, and researchers who need a reference resource on artificial intelligence and its applications and is primarily intended for use in courses offered by higher education institutions that strive to equip their graduates with Industry 4.0 skills. FEATURES: Gender disparity in the enterprises involved in the development of AI-based software development as well as solutions to eradicate such gender bias in the AI world A general framework for AI in environmental management, smart farming, e-waste management, and smart energy optimization The potential and application of AI in medical imaging as well as the challenges of AI in precision medicine AI’s role in the diagnosis of various diseases, such as cancer and diabetes The role of machine learning models in product development and statistically monitoring product quality Machine learning to make robust and effective economic policy decisions Machine learning and data mining approaches to provide better video indexing mechanisms resulting in better searchable results ABOUT THE EDITORS: Prof. Dr. P. Kaliraj is Vice Chancellor at Bharathiar University, Coimbatore, India. Prof. Dr. T. Devi is Professor and Head of the Department of Computer Applications, Bharathiar University, Coimbatore, India.
Computational Intelligence in Cancer Diagnosis: Progress and Challenges provides insights into the current strength and weaknesses of different applications and research findings on computational intelligence in cancer research. The book improves the exchange of ideas and coherence among various computational intelligence methods and enhances the relevance and exploitation of application areas for both experienced and novice end-users. Topics discussed include neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. The book's chapters are written by international experts from both cancer research, oncology and computational sides to cover different aspects and make it comprehensible for readers with no background on informatics. - Contains updated information about advanced computational intelligence, spanning the areas of neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems in diagnosing cancer diseases - Discusses several cancer types, including their detection, treatment and prevention - Presents case studies that illustrate the applications of intelligent computing in data analysis to help readers to analyze and advance their research in cancer
This report provides an international benchmarking of Germany’s artificial intelligence (AI) ecosystem and discusses progress in implementing its national AI strategy. The report draws on quantitative and qualitative data and insights from the OECD.AI Policy Observatory and from the OECD Programme on AI in Work, Innovation, Productivity and Skills (AI-WIPS) – an OECD research programme financed by the German Federal Government – and results from a series of interviews with a wide range of stakeholders in Germany. The review discusses Germany’s strengths, weaknesses, opportunities, and challenges in AI, and provides recommendations to steer AI policy in Germany in the coming years. The evidence is presented according to the core focus areas outlined in Germany’s national AI strategy, which include: 1) minds; 2) research; 3) transfer and applications; 4) the world of work; 5) policy and regulatory frameworks; and 6) society. Furthermore, the report discusses AI infrastructure and it includes three sector spotlights on AI in the public sector, AI and environmental sustainability and AI and healthcare.
The book presents the proceedings of the 11th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2023), held at Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, UK, during April 11–12, 2023. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. This book is divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols, and architectures. This book is a valuable resource for postgraduate students in various engineering disciplines.
A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.