Download Free Wireless Network Coexistence Book in PDF and EPUB Free Download. You can read online Wireless Network Coexistence and write the review.

Wireless Coexistence Explore a comprehensive review of the motivation for wireless coexistence and the standards and technology used to achieve it Wireless Coexistence: Standards, Challenges, and Intelligent Solutions delivers a thorough exploration of wireless ecosystems sharing the spectrum, including the multiple standards and key requirements driving the current state of wireless technology. The book surveys several standards, including IEEE 802.22, 802.15.2, and 802.19.1 and expands upon recent advances in machine learning and artificial intelligence to demonstrate how these technologies might be used to meet or exceed the challenges of wireless coexistence. The text discusses cognitive radio in the context of spectrum coexistence and provides a comparison and assessment of using artificial intelligence in place of, or in addition to, current techniques. It also considers applications to communication theory, learning algorithms for passive wireless coexistence strategies, spectrum situational awareness, and active wireless coexistence strategies. With the necessity of spectrum sharing and the scarcity of unused spectrum on the rise, the standardization of wireless coexistence becomes more important with each passing day. Readers will learn about the challenges posed by shrinking wireless real estate and from the inclusion of topics like: A thorough introduction to the concept of, and motivation for, wireless coexistence, including congestion and interference, policies, and regulations An exploration of different wireless coexistence standards, including the need for standardization and various protocols, including 802.22, 802.15.2, 802.19.1, P1900, and 3GPP Release 13/14 LAA A discussion of the applications of communication theory, including primary user strategies, primary multi-user protocols, and successive interference cancellation A treatment of concepts in learning algorithms Perfect for scientists, researchers, engineers, developers, educators, and administrators working in the area of wireless networks, Wireless Coexistence: Standards, Challenges, and Intelligent Solutions will also earn a place in the libraries of graduate students studying wireless networks and seeking a one-stop reference for subjects related to wireless coexistence standards.
The book deals with the integration and practical applications of the entire gamet of wireless services, including Wi-Fi, Wi-Media, ZigBee, and Bluetooth. It discusses what each of the services has to offer, what can be accomplished with each, and how each fits into an integrated wireless solution.
This book introduces readers to the fundamentals of the cross-technology coexistence problem in heterogeneous wireless networks. It also highlights a range of mechanisms designed to combat this problem and improve network performance, including protocol design, theoretical analysis, and experimental evaluation. In turn, the book proposes three mechanisms that can be combined to combat the cross-technology coexistence problem and improve network performance. First, the authors present a fast signal identification method. It provides the basis for the subsequent protocol design and allows heterogeneous devices to adopt proper transmission strategies. Second, the authors present two cross-technology interference management mechanisms in both the time domain and the frequency domain, which can mitigate interference and increase transmission opportunities for heterogeneous devices, thus improving network performance. Third, they present a cross-technology communication mechanism based on symbol-level energy modulation, which allows heterogeneous devices to transmit information directly without a gateway, improving transmission efficiency and paving the way for new applications in IoT scenarios. Lastly, they outline several potential research directions to further improve the efficiency of cross-technology coexistence. This book is intended for researchers, computer scientists, and engineers who are interested in the research areas of wireless networking, wireless communication, mobile computing, and Internet of Things. Advanced-level students studying these topics will benefit from the book as well.
ZigBee is a short-range wireless networking standard backed by such industry leaders as Motorola, Texas Instruments, Philips, Samsung, Siemens, Freescale, etc. It supports mesh networking, each node can transmit and receive data, offers high security and robustness, and is being rapidly adopted in industrial, control/monitoring, and medical applications. This book will explain the ZigBee protocol, discuss the design of ZigBee hardware, and describe how to design and implement ZigBee networks. The book has a dedicated website for the latest technical updates, ZigBee networking calculators, and additional materials. Dr. Farahani is a ZigBee system engineer for Freescale semiconductors Inc. The book comes with a dedicated website that contains additional resources and calculators: http://www.learnZigBee.com Provides a comprehensive overview of ZigBee technology and networking, from RF/physical layer considerations to application layer development Discusses ZigBee security features such as encryption Describes how ZigBee can be used in location detection applications Explores techniques for ZigBee co-existence with other wireless technologies such as 802.11 and Bluetooth The book comes with a dedicated website that contains additional resources and calculators: http://www.learnZigBee.com
Combines the latest trends in spectrum sharing, both from a research and a standards/regulation/experimental standpoint Written by noted professionals from academia, industry, and research labs, this unique book provides a comprehensive treatment of the principles and architectures for spectrum sharing in order to help with the existing and future spectrum crunch issues. It presents readers with the most current standardization trends, including CEPT / CEE, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP), and LTE/Wi-Fi aggregation (LWA), and offers substantial trials and experimental results, as well as system-level performance evaluation results. The book also includes a chapter focusing on spectrum policy reinforcement and another on the economics of spectrum sharing. Beginning with the historic form of cognitive radio, Spectrum Sharing: The Next Frontier in Wireless Networks continues with current standardized forms of spectrum sharing, and reviews all of the technical ingredients that may arise in spectrum sharing approaches. It also looks at policy and implementation aspects and ponders the future of the field. White spaces and data base-assisted spectrum sharing are discussed, as well as the licensed shared access approach and cooperative communication techniques. The book also covers reciprocity-based beam forming techniques for spectrum sharing in MIMO networks; resource allocation for shared spectrum networks; large scale wireless spectrum monitoring; and much more. Contains all the latest standardization trends, such as CEPT / ECC, eLSA, CBRS, MulteFire, LTE-Unlicensed (LTE-U), LTE WLAN integration with Internet Protocol security tunnel (LWIP) and LTE/Wi-Fi aggregation (LWA) Presents a number of emerging technologies for future spectrum sharing (collaborative sensing, cooperative communication, reciprocity-based beamforming, etc.), as well as novel spectrum sharing paradigms (e.g. in full duplex and radar systems) Includes substantial trials and experimental results, as well as system-level performance evaluation results Contains a dedicated chapter on spectrum policy reinforcement and one on the economics of spectrum sharing Edited by experts in the field, and featuring contributions by respected professionals in the field world wide Spectrum Sharing: The Next Frontier in Wireless Networks is highly recommended for graduate students and researchers working in the areas of wireless communications and signal processing engineering. It would also benefit radio communications engineers and practitioners.
The next frontier for wireless LANs is 802.11ac, a standard that increases throughput beyond one gigabit per second. This concise guide provides in-depth information to help you plan for 802.11ac, with technical details on design, network operations, deployment, and monitoring. Author Matthew Gast—an industry expert who led the development of 802.11-2012 and security task groups at the Wi-Fi Alliance—explains how 802.11ac will not only increase the speed of your network, but its capacity as well. Whether you need to serve more clients with your current level of throughput, or serve your existing client load with higher throughput, 802.11ac is the solution. This book gets you started. Understand how the 802.11ac protocol works to improve the speed and capacity of a wireless LAN Explore how beamforming increases speed capacity by improving link margin, and lays the foundation for multi-user MIMO Learn how multi-user MIMO increases capacity by enabling an AP to send data to multiple clients simultaneously Plan when and how to upgrade your network to 802.11ac by evaluating client devices, applications, and network connections
The first and only up-to-date guide offering complete coverage of HetNets—written by top researchers and engineers in the field Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject—offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applications. The book also contains: The latest review of research outcomes on HetNets based on both theoretical analyses and network simulations Over 200 sources from 3GPP, the Small Cell Forum, journals and conference proceedings, and all prominent topics in HetNet An overview of indoor coverage techniques such as metrocells, picocells and femtocells, and their deployment and optimization Real case studies as well as innovative research results based on both simulation and measurements Detailed information on simulating heterogeneous networks as used in the examples throughout the book Given the importance of HetNets for future wireless communications, Small Cell Networks: Deployment, Management, and Optimization is sure to help decision makers as they consider the migration of services to HetNets. It will also appeal to anyone involved in information and communication technology.
Provides the key practical considerations for deploying wireless LANs and a solid understanding of the emerging technologies.
A new edition of the most comprehensive and up-to-date overview of the features of the 802.11n and 802.11ac WLAN standards.
Although sophisticated wireless radio technologies make it possible for unlicensed wireless devices to take advantage of un-used broadcast TV spectra, those looking to advance the field have lacked a book that covers cognitive radio in TV white spaces (TVWS). Filling this need, TV White Space Spectrum Technologies: Regulations, Standards and Applic