Download Free Wildland Fires Forest Service And Blm Need Better Information And Systematic Approach For Assessing The Risks Of Environmental Effects Report To Congressional Requesters Book in PDF and EPUB Free Download. You can read online Wildland Fires Forest Service And Blm Need Better Information And Systematic Approach For Assessing The Risks Of Environmental Effects Report To Congressional Requesters and write the review.

Decades of fire suppression, as well as changing land management practices, have caused vegetation to accumulate and become altered on federal lands. Concerns about the effects of wildland fires have increased efforts to reduce fuels on federal lands. These efforts also have environmental effects. The requesters asked GAO to (1) describe effects from fires on the environment, (2) assess the information gathered by the Forest Service and Bureau of Land Management (BLM) on such effects, and (3) assess the agencies approaches to environmental risks associated with reducing fuels. This report recommends that the Secretaries of Agriculture and the Interior (1) develop a plan to implement the agencies monitoring framework, (2) develop guidance that formalizes the assessment of landscape-level risks to ecosystems, and (3) clarify existing guidance, working with the Council on Environmental Quality (CEQ), to assess the risks of environmental effects from reducing fuels.
Since 1997, the Ecosystem Management Decision Support (EMDS) system has been used around the world to support environmental analysis and planning in many different application areas, and it has been applied over a wide range of geographic scales, from forest stands to entire countries. An extensive sampling of this diversity of applications is presented in section 2, in which EMDS application developers describe the varied uses of the system. These accounts, together with the requisite background in section 1, provide valuable practical insights into how the system can be applied in the general domain of environmental management.
In July 2006, more than 170 researchers and managers from the United States, Canada, and Mexico convened in Boulder, Colorado, to discuss the state of the science in environmental threat assessment. This two-volume general technical report compiles peer-reviewed papers that were among those presented during the 3-day conference. Papers are organized by four broad topical sections--Land, Air and Water, Fire, and Pests/Biota--and are divided into syntheses and case studies. Land topics include discussions of forest land conversion and soil quality as well as investigations of species' responses to climate change. Air and water topics include discussions of forest vulnerability to severe weather and storm damage modeling. Fire topics include discussions of wildland arson and wildfire risk management as well as how people precieve wildfire risk and uncertainty. Pests/biota topics include discussions of risk mapping and probabilistic risk assessments as well as investigations of individual threats, including the southern pine beetle and Phytophora alni. Ultimately, this publication will foster exchange and collaboration between those who develop knowledge and tools for threat assessment and those who are responsible for managing forests and rangelands.
Wildland Fires: Forest Service and BLM Need Better Information and a Systematic Approach for Assessing the Risks of Environmental Effects
GAO-04-705 Wildland Fires: Forest Service and BLM Need Better Information and a Systematic Approach for Assessing the Risks of Environmental Effects
Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr, 100 hr, and 1000 hr downed dead woody, shrub, and herbaceous fuels). This technique involves visually comparing fuel conditions in the field with photoload sequences to estimate fuel loadings. Photoload sequences are a series of downward-looking and close-up oblique photographs depicting a sequence of graduated fuel loadings of synthetic fuelbeds for each of the six fuel components. This report contains a set of photoload sequences that describe the range of fuel component loadings for common forest conditions in the northern Rocky Mountains of Montana, USA to estimate fuel loading in the field. A companion publication (RMRS-RP-61CD) details the methods used to create the photoload sequences and presents a comprehensive evaluation of the technique.
Wildland fire managers need better estimates of fuel loading so they can accurately predict potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents the development and evaluation of a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components using downward looking and oblique photographs depicting a sequence of graduated fuel loadings of synthetic fuelbeds. This report details the methods used to construct the photoload sequences (series of photos depicting gradually increasing loadings) for the six fuel components. A companion paper (RMRS-GTR-190) presents the set of photoload sequences developed from this study for common fuelbed conditions found in the northern Rocky Mountains of Montana, USA, along with a detailed sampling protocol that can be used with these photoload picture series to estimate fuel component loadings in the field at various levels of effort and scale. An evaluation of the photoload sampling technique was conducted where 29 participants were asked to estimate loadings for the six fuel components on five sites using the photoload technique. These visual estimates were compared with actual measured loadings to obtain estimates of accuracy and precision. We found that photoload estimates consistently underestimated fuel loadings (average bias 0.182 kg m-2 or 0.8 tons acre-1) but the error of the estimate (0.018 kg m-2 or 0.08 tons acre-1) was within 10 to 50 percent of the mean depending on fuel component. We also found that accuracy and precision of the photoload estimates increased with increasing field experience and also with increasing fuel loadings.