Download Free Widegap Ii Vi Compounds For Opto Electronic Applications Book in PDF and EPUB Free Download. You can read online Widegap Ii Vi Compounds For Opto Electronic Applications and write the review.

This book is intended for readers desiring a comprehensive analysis of the latest developments in widegap II-VI materials research for opto-electronic applications and basic insight into the fundamental underlying principles. Therefore, it is hoped that this book will serve two purposes. Firstly, to educate newcomers to this exciting area of physics and technology and, secondly, to provide specialists with useful references and new insights in related areas of II-VI materials research. The motivation for preparing this book originated from the need for a current review of this fertile and important field. A primary goal of this book is therefore to present an eclectic synthesis of these sometimes diverse fields of investigation. This book consists of three main sections, namely (1) Growth and Properties, (2) Materials Characterization and (3) Devices. Part One presents an overall perspective of the state of the art in the preparation of the widegap II-VI materials. Part Two concentrates on current topics pertinent to the characterization of these materials from the unique perspective of each of the authors. Part Three focuses on advances in the opto-electronic applications of these materials. The material in this section runs the gamut from addressing recent advances in device areas which date back to some of the earliest reported research in these materials, to tackling some quite new and exciting future directions.
This book is intended for readers desiring a comprehensive analysis of the latest developments in widegap II-VI materials research for opto-electronic applications and basic insight into the fundamental underlying principles. Therefore, it is hoped that this book will serve two purposes. Firstly, to educate newcomers to this exciting area of physics and technology and, secondly, to provide specialists with useful references and new insights in related areas of II-VI materials research. The motivation for preparing this book originated from the need for a current review of this fertile and important field. A primary goal of this book is therefore to present an eclectic synthesis of these sometimes diverse fields of investigation. This book consists of three main sections, namely (1) Growth and Properties, (2) Materials Characterization and (3) Devices. Part One presents an overall perspective of the state of the art in the preparation of the widegap II-VI materials. Part Two concentrates on current topics pertinent to the characterization of these materials from the unique perspective of each of the authors. Part Three focuses on advances in the opto-electronic applications of these materials. The material in this section runs the gamut from addressing recent advances in device areas which date back to some of the earliest reported research in these materials, to tackling some quite new and exciting future directions.
The field of narrow-gap II-VI materials is dominated by lhe compound mercury cadmium telluride, MCT or Hg1_ .. Cd .. Te. By varying the x value, material can be made to cover all the important infrared (lR) ranges of interest. It is probably true to say that MCT is the third most studied semiconductor after silicon and gallium arsenide. As current epitaxial layers of MCT are mainly grown on bulk CdTe family substrates these materials are included in this book, although strictly, of course, they are not 'narrow-gap'. This book is intended for readers who are either new to the field or are experienced workers in the field who need a comprehensive and up to date view of this rapidly expanding area. To satisfy the needs of the frrst group each chapter discusses the principles underlying each topic and some of the historical background before bringing the reader the most recent information available. For those currently in the field the book can be used as a collection of useful data, as a guide to the literature and as an overview of topics covering the wide range of work areas.
A continued study to demonstrate the viability of growth of LED and laser diode structures on ZnSe substrates as compared with heteroepitaxial growth of II-VI structures on GaAs substrates. Other key issues that were to be addressed included p-type doping of ZnSe using nitrogen plasma sources and the ohmic contact problem for p-type ZnSe. jg p1.
This volume provides the readers an in-depth, yet concise, overview of the physico-chemical structures, luminescence and related properties of II-VI compounds which are being utilised and exhaustively studied these days for their applications in LED's, modern optoelectronic devices, flat EL screens and panels, infrared detectors, photovoltaic and thermal solar energy converters etc. The book, therefore, should be useful to a wide variety of people (working in the field of luminescence and related properties of II-VI compounds, i.e. advanced graduate students) and serve as a review to researchers entering in this field and working on these materials. It should also be useful to solid state spectroscopists, lasers physicists; electronic and illuminating engineering people, and all those professionals using these materials.
Wide Gap II-VI Semiconductors presents the proceedings of the E-MRS Advanced Research Workshop which was held at Montpellier between 16-18 January 1991. These proceedings will stimulate ideas and interest for the future development of the wide bandgap II-VI compounds and major new device applications. To this end, contributions from some 70 scientists (mainly from France, Germany and the UK, but also, and most importantly, a few leading USA and Japanese researchers) discuss and examine the potential of the II-VIs, especially ZnSe and related materials, as blue light emitters and laser diodes. The current status of the role of these materials is the subject of considerable interest and is featured in two lively round table discussion papers: 'Doping in II-VIs' and 'Practical devices for blue emission'. In the face of major research programmes on II-VI compounds in the USA and Japan, this volume explores European research and new initiatives in this field. Wide Gap II-VI Semiconductors is an essential record of the present state of research and of the factors governing the future. The papers presented here are reprinted from Semiconductor Science and Technology (1991, Volume 6, Number 9a), an Institute of Physics journal.
Contents: X-Ray Characterisation of II-VI Semiconductor Materials (D Gao et al.)Electronic Structure of II-VI Semiconductors and Their Alloys (S-H Wei)Radiative Recombination Processes in Rare Earth Doped II-VI Materials (M Godlewski et al.)Nonlinear Optical Properties of Heavily Doped CdS (U Neukirch)Nanostructures of Broad Gap (II,Mn) VI Semiconductors (W Heimbrodt & O Goede)Co-Based II-VI Semimagnetic Semiconductors (A Twardowski et al.)Photoluminescence and Raman Scattering of ZnSe-ZnTe Strained Layer Superlattices (K Kumazaki)Novel Electronic Processes in Mercury-Based Superlattices (J R Meyer et al.)Strain, Pressure and Piezoelectric Effects in Strained II-VI Superlattices and Heterostructures (E Anastassakia)Electronic Structures of Strained II-VI Superlattices (T Nakayama)Devices and Applications of II-VI Compounds (S Colak)Solar Cells Based on II-VI Semiconductors (H Uda)ZnSe and Its Applications for Blue-Light Laser Diodes (M Pessa & D Ahn)Molecular Beam Epitaxy of HgCdTe for Electro-Optical Infrared Applications (J M A Cortés)and other papers Readership: Condensed matter physicists and electronic engineers. keywords:
In recent years, extensive work has been done on strain, dislocations and mechanical properties of strained layers. Although it is not possible to describe all this work in a monograph of this size, Compound Semiconductors Strained Layers and Devices provides an overview with sufficient detail to cover all the essential aspects of recent developments in the field. The book concentrates on compound semiconductors with emphasis on wideband gap II-VI and III-Nitride semiconductors. GeSi strained layers are discussed for comparison to clarify the underlying physics. The effects of strain on band structure, transport, and optical properties of both the zinc blende and the wurtzite compound semiconductors are discussed, as are Piezoelectric Effects and Quantum Confined Stark Effects. Magnetic polarons in diluted II-VI magnetic polarons are also covered. Among the applications, blue and green LEDs and LDs and mid-IR LDs are included. A whole chapter is devoted to these devices. Another chapter examines transistors based on conventional III-V, II-VI and III-nitride semiconductors. The subject matter is treated at a level appropriate for students and senior researchers interested in material science, and in designing and modeling semiconductor devices. It will also be useful to engineers and material scientists concerned with the effects of strain on the mechanical properties of crystalline layers of any material.
An up-to-date view of the various detector/emitter materials systems currently in use or being actively researched. The book is aimed at newcomers and those already working in the IR industry. It provides both an introductory text and a valuable overview of the entire field.