Download Free Wideband Circuit Design Book in PDF and EPUB Free Download. You can read online Wideband Circuit Design and write the review.

Wideband Circuit Design starts at a foundational level and proceeds at a carefully gauged pace to advanced topics, providing a self-sufficient text for specialization in wideband analog circuit design for the fields of telecommunications and related areas. Basic theory and comprehensive circuit analysis methods (oriented for application to general network computer programs) are detailed and then extended to applicational topics such as filters, delay structures, equalizers, matching networks, broadband amplifiers, and microwave components. Novel and simplified approaches to such fundamental topics as linear circuit time domain response, synthesis of cascaded networks, and the construction of Chebychev and elliptic transfer functions are given. For the first time in book form a unified presentation of analytic matching and gain-bandwidth theory, integrated with the numerical Real Frequency design technique (originally published by the authors), is delineated. Wideband Circuit Design presents all the concepts, techniques, and procedures you need to gain the broad understanding necessary for finding creative solutions to wideband circuit design problems.
Wideband Circuit Design starts at a foundational level and proceeds at a carefully gauged pace to advanced topics, providing a self-sufficient text for specialization in wideband analog circuit design for the fields of telecommunications and related areas. Basic theory and comprehensive circuit analysis methods (oriented for application to general network computer programs) are detailed and then extended to applicational topics such as filters, delay structures, equalizers, matching networks, broadband amplifiers, and microwave components. Novel and simplified approaches to such fundamental topics as linear circuit time domain response, synthesis of cascaded networks, and the construction of Chebychev and elliptic transfer functions are given. For the first time in book form a unified presentation of analytic matching and gain-bandwidth theory, integrated with the numerical Real Frequency design technique (originally published by the authors), is delineated. Wideband Circuit Design presents all the concepts, techniques, and procedures you need to gain the broad understanding necessary for finding creative solutions to wideband circuit design problems.
Combining analytic theory and modern computer-aided design techniques this volume will enable you to understand and design power transfer networks and amplifiers in next generation radio frequency (RF) and microwave communication systems. A comprehensive theory of circuits constructed with lumped and distributed elements is covered, as are electromagnetic field theory, filter theory, and broadband matching. Along with detailed roadmaps and accessible algorithms, this book provides up-to-date, practical design examples including: filters built with microstrip lines in C and X bands; various antenna matching networks over HF and microwave frequencies; channel equalizers with arbitary gain shapes; matching networks for ultrasonic transducers; ultra wideband microwave amplifiers constructed with lumped and distributed elements. A companion website details all Real Frequency Techniques (including line segment and computational techniques) with design tools developed on MatLab. Essential reading for all RF and circuit design engineers, this is also a great reference text for other electrical engineers and researchers working on the development of communications applications at wideband frequencies. This book is also beneficial to advanced electrical and communications engineering students taking courses in RF and microwave communications technology. www.wiley.com/go/yarman_wideband
Allen Hollister uses easy models to develop the theory needed to understand wideband amplifier design. With this theory, he develops equations used in high frequency design, giving the reader an understanding of the process and circuit.
This book is a compilation of chapters on various aspects of Ultra Wideband. The book includes chapters on Ultra Wideband transceiver implementations, pulse-based systems and one on the implementation for the WiMedia/MBOFDM approach. Another chapter discusses the implementation of the physical layer baseband, including the ADC and post-ADC processing required in the UWB system. Future advances such as multiantenna UWB solutions are also discussed.
A comprehensive study of silicon-based distributed architectures in wideband circuits are presented in this book. Novel circuit architectures for ultra-wideband (UWB) wireless technologies are described. The book begins with an introduction of several transceiver architectures for UWB. The discussion then focuses on RF front-end of the UWB radio. Therefore, the book will be of interest to RF circuit designers and students.
This work covers two bases, both performance optimization strategies and a complete introduction to mathematical procedures required for a successful circuit design. It starts from the basics of mathematical procedures and circuit analysis before moving on to the more advanced topics of system optimization and synthesis, along with the complete mathematical apparatus required. The authors have been at pains to make the material accessible by limiting the mathematics to the necessary minimum.
This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of continuous-time sigma-delta modulators, automotive electronics, and power management. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.
Analog Circuit Design contains the contribution of 18 tutorials of the 14th workshop on Advances in Analog Circuit Design. Each part discusses a specific todate topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 14 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of analog circuit design, CAD and RF systems. Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
Analog circuit design has grown in importance because so many circuits cannot be realized with digital techniques. Examples are receiver front-ends, particle detector circuits, etc. Actually, all circuits which require high precision, high speed and low power consumption need analog solutions. High precision also needs low noise. Much has been written already on low noise design and optimization for low noise. Very little is available however if the source is not resistive but capacitive or inductive as is the case with antennas or semiconductor detectors. This book provides design techniques for these types of optimization. This book is thus intended firstly for engineers on senior or graduate level who have already designed their first operational amplifiers and want to go further. It is especially for engineers who do not want just a circuit but the best circuit. Design techniques are given that lead to the best performance within a certain technology. Moreover, this is done for all important technologies such as bipolar, CMOS and BiCMOS. Secondly, this book is intended for engineers who want to understand what they are doing. The design techniques are intended to provide insight. In this way, the design techniques can easily be extended to other circuits as well. Also, the design techniques form a first step towards design automation. Thirdly, this book is intended for analog design engineers who want to become familiar with both bipolar and CMOS technologies and who want to learn more about which transistor to choose in BiCMOS.