Download Free Wide Band Gap Semiconductor Nanowires 1 Book in PDF and EPUB Free Download. You can read online Wide Band Gap Semiconductor Nanowires 1 and write the review.

GaN and ZnO nanowires can by grown using a wide variety of methods from physical vapor deposition to wet chemistry for optical devices. This book starts by presenting the similarities and differences between GaN and ZnO materials, as well as the assets and current limitations of nanowires for their use in optical devices, including feasibility and perspectives. It then focuses on the nucleation and growth mechanisms of ZnO and GaN nanowires, grown by various chemical and physical methods. Finally, it describes the formation of nanowire heterostructures applied to optical devices.
Presenting the similarities and differences between GaN and ZnO materials, this book is devoted to the specific case of wires obtained from a given kind of semiconductors, namely the semiconducting materials with a direct and wide band gap (WBG). --
WIDE BANDGAP NANOWIRES Comprehensive resource covering the synthesis, properties, and applications of wide bandgap nanowires This book presents first-hand knowledge on wide bandgap nanowires for sensor and energy applications. Taking a multidisciplinary approach, it brings together the materials science, physics and engineering aspects of wide bandgap nanowires, an area in which research has been accelerating dramatically in the past decade. Written by four well-qualified authors who have significant experience in the field, sample topics covered within the work include: Nanotechnology-enabled fabrication of wide bandgap nanowires, covering bottom-up, top-down and hybrid approaches Electrical, mechanical, optical, and thermal properties of wide bandgap nanowires, which are the basis for realizing sensor and energy device applications Measurement of electrical conductivity and fundamental electrical properties of nanowires Applications of nanowires, such as in flame sensors, biological sensors, and environmental monitoring For materials scientists, electrical engineers and professionals involved in the semiconductor industry, this book serves as a completely comprehensive resource to understand the topic of wide bandgap nanowires and how they can be successfully used in practical applications.
This book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and GaN, but also with different chemical and physical synthesis methods, will bring valuable comparisons in order to gain a general approach for the growth of wide band gap nanowires applied to optical devices.
This book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and GaN, but also with different chemical and physical synthesis methods, will bring valuable comparisons in order to gain a general approach for the growth of wide band gap nanowires applied to optical devices.
Volume 1, Metal and Semiconductor Nanowires covers a wide range of materials systems, from noble metals (such as Au, Ag, Cu), single element semiconductors (such as Si and Ge), compound semiconductors (such as InP, CdS and GaAs as well as heterostructures), nitrides (such as GaN and Si3N4) to carbides (such as SiC). The objective of this volume is to cover the synthesis, properties and device applications of nanowires based on metal and semiconductor materials. The volume starts with a review on novel electronic and optical nanodevices, nanosensors and logic circuits that have been built using individual nanowires as building blocks. Then, the theoretical background for electrical properties and mechanical properties of nanowires is given. The molecular nanowires, their quantized conductance, and metallic nanowires synthesized by chemical technique will be introduced next. Finally, the volume covers the synthesis and properties of semiconductor and nitrides nanowires.
This book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and GaN, but also with different chemical and physical synthesis methods, will bring valuable comparisons in order to gain a general approach for the growth of wide band gap nanowires applied to optical devices
Volume 1, Metal and Semiconductor Nanowires covers a wide range of materials systems, from noble metals (such as Au, Ag, Cu), single element semiconductors (such as Si and Ge), compound semiconductors (such as InP, CdS and GaAs as well as heterostructures), nitrides (such as GaN and Si3N4) to carbides (such as SiC). The objective of this volume is to cover the synthesis, properties and device applications of nanowires based on metal and semiconductor materials. The volume starts with a review on novel electronic and optical nanodevices, nanosensors and logic circuits that have been built using individual nanowires as building blocks. Then, the theoretical background for electrical properties and mechanical properties of nanowires is given. The molecular nanowires, their quantized conductance, and metallic nanowires synthesized by chemical technique will be introduced next. Finally, the volume covers the synthesis and properties of semiconductor and nitrides nanowires.
At the end of the Second World War, a new technological trend was born: integrated electronics. This trend relied on the enormous rise of integrable electronic devices. Analog Devices and Circuits is composed of two volumes: the first deals with analog components, and the second with associated analog circuits. The goal here is not to create an overly comprehensive analysis, but rather to break it down into smaller sections, thus highlighting the complexity and breadth of the field. This first volume, after a brief history, describes the two main devices, namely bipolar transistors and MOS, with particular importance given to the modeling aspect. In doing so, we deal with new devices dedicated to radio frequency, which touches on nanoelectronics. We will also address some of the notions related to quantum mechanics. Finally, Monte Carlo methods, by essence statistics, will be introduced, which have become more and more important since the middle of the twentieth century. The second volume deals with the circuits that "use" the analog components that were introduced in Volume 1. Here, a particular emphasis is placed on the main circuit: the operational amplifier.