Download Free Wide Area Oscillation Identification And Damping Control In Power Systems Book in PDF and EPUB Free Download. You can read online Wide Area Oscillation Identification And Damping Control In Power Systems and write the review.

Power System Oscillations deals with the analysis and control of low frequency oscillations in the 0.2-3 Hz range, which are a characteristic of interconnected power systems. Small variations in system load excite the oscillations, which must be damped effectively to maintain secure and stable system operation. No warning is given for the occurrence of growing oscillations caused by oscillatory instability, since a change in the system's operating condition may cause the transition from stable to unstable. If not limited by nonlinearities, unstable oscillations may lead to rapid system collapse. Thus, it is difficult for operators to intervene manually to restore the system's stability. It follows that it is important to analyze a system's oscillatory behavior in order to understand the system's limits. If the limits imposed by oscillatory instability are too low, they may be increased by the installation of special stabilizing controls. Since the late 60s when this phenomena was first observed in North American systems, intensive research has resulted in design and installation of stabilizing controls known as power system stabilizers (PSS). The design, location and tuning of PSS require special analytical tools. This book addresses these questions in a modal analysis framework, with transient simulation as a measure of controlled system performance. After discussing the nature of the oscillations, the design of the PSS is discussed extensively using modal analysis and frequency response. In the scenario of the restructured power system, the performance of power system damping controls must be insensitive to parameter uncertainties. Power system stabilizers, when well tuned, are shown to be robust using the techniques of modern control theory. The design of damping controls, which operate through electronic power system devices (FACTS), is also discussed. There are many worked examples throughout the text. The Power System Toolbox© for use with MATLAB® is used to perform all of the analyses used in this book. The text is based on the author's experience of over 40 years as an engineer in the power industry and as an educator.
This book presents the research and development results on power systems oscillations in three categories of analytical methods. First is damping torque analysis which was proposed in 1960’s, further developed between 1980-1990, and widely used in industry. Second is modal analysis which developed between the 1980’s and 1990’s as the most powerful method. Finally the linearized equal-area criterion analysis that is proposed and developed recently. The book covers three main types of controllers: Power System Stabilizer (PSS), FACTS (Flexible AC Transmission Systems) stabilizer, and ESS (Energy Storage Systems) stabilizer. The book provides a systematic and detailed introduction on the subject as the reference for industry applications and academic research.
An essential guide to the stability and control of power systems integrating large-scale renewable energy sources The rapid development of smart grids and the integration of large scale renewable energy have added daunting new layers of complexity to the long-standing problem of power system stability control. This book offers a systematic stochastic analysis of these nonlinear problems and provides comprehensive countermeasures to improve power system performance and control with large-scale, hybrid power systems. Power system stability analysis and control is by no means a new topic. But the integration of large scale renewable energy sources has added many new challenges which must be addressed, especially in the areas of time variance, time delay, and uncertainties. Robust, adaptive control strategies and countermeasures are the key to avoiding inadequate, excessive, or lost loads within hybrid power systems. Written by an internationally recognized innovator in the field this book describes the latest theory and methods for handling power system angle stability within power networks. Dr. Jing Ma analyzes and provides control strategies for large scale power systems and outlines state-of-the-art solutions to the entire range of challenges facing today’s power systems engineers. Features nonlinear, stochastic analysis of power system stability and control Offers proven countermeasures to optimizing power system performance Focuses on nonlinear time-variance, long time-delays, high uncertainties and comprehensive countermeasures Emphasizes methods for analyzing and addressing time variance and delay when integrating large-scale renewable energy Includes rigorous algorithms and simulations for the design of analysis and control modeling Power System Wide-area Stability Analysis and Control is must-reading for researchers studying power system stability analysis and control, engineers working on power system dynamics and stability, and graduate students in electrical engineering interested in the burgeoning field of smart, wide-area power systems.
The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 250 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks and evolutionary game theory. Because the content has been selected to reflect both foundational importance as well as subjects that are of current interest to the research and practitioner communities, a broad readership that includes students, application engineers, and research scientists will find material that is of interest.
This book reports on the latest findings in the application of the wide area measurement systems (WAMS) in the analysis and control of power systems. The book collects new research ideas and achievements including a delay-dependent robust design method, a wide area robust coordination strategy, a hybrid assessment and choice method for wide area signals, a free-weighting matrices method and its application, as well as the online identification methods for low-frequency oscillations. The main original research results of this book are a comprehensive summary of the authors’ latest six-year study. The book will be of interest to academic researchers, R&D engineers and graduate students in power systems who wish to learn the core principles, methods, algorithms, and applications of the WAMS.
The study of complex dynamic processes governed by nonlinear and nonstationary characteristics is a problem of great importance in the analysis and control of power system oscillatory behavior. Power system dynamic processes are highly random, nonlinear to some extent, and intrinsically nonstationary even over short time intervals as in the case of severe transient oscillations in which switching events and control actions interact in a complex manner. Phenomena observed in power system oscillatory dynamics are diverse and complex. Measured ambient data are known to exhibit noisy, nonstationary fluctuations resulting primarily from small magnitude, random changes in load, driven by low-scale motions or nonlinear trends originating from slow control actions or changes in operating conditions. Forced oscillations resulting from major cascading events, on the other hand, may contain motions with a broad range of scales and can be highly nonlinear and time-varying. Prediction of temporal dynamics, with the ultimate application to real-time system monitoring, protection and control, remains a major research challenge due to the complexity of the driving dynamic and control processes operating on various temporal scales that can become dynamically involved. An understanding of system dynamics is critical for reliable inference of the underlying mechanisms in the observed oscillations and is needed for the development of effective wide-area measurement and control systems, and for improved operational reliability.
This book proposes new control and protection schemes to improve the overall stability and security of future wide-area power systems. It focuses on the high penetration levels of renewable energy sources and distributed generation, particularly with the trend towards smart grids. The control methods discussed can improve the overall stability in normal and abnormal operation conditions, while the protection methods presented can be used to ensure the secure operation of systems under most severe contingencies. Presenting stability, security, and protection methods for power systems in one concise volume, this book takes the reader on a journey from concepts and fundamentals to the latest and future trends in each topic covered, making it an informative and intriguing read for researchers, graduate students, and practitioners alike.
A thorough and exhaustive presentation of theoretical analysis and practical techniques for the small-signal analysis and control of large modern electric power systems as well as an assessment of their stability and damping performance.
This book provides an account of the field of synchronized Phasor Measurement technology, its beginning, its technology and its principal applications. It covers wide Area Measurements (WAM) and their applications. The measurements are done using GPS systems and eventually will replace the existing technology. The authors created the field about twenty years ago and most of the installations planned or now in existence around the world are based on their work.
POWER SYSTEM MONITORING AND CONTROL An invaluable resource for addressing the myriad critical technical engineering considerations in modern electric power system design and operation Power System Monitoring and Control (PSMC) is becoming increasingly significant in the design, planning, and operation of modern electric power systems. In response to the existing challenge of integrating advanced metering, computation, communication, and control into appropriate levels of PSMC, Power System Monitoring and Control presents a comprehensive overview of the basic principles and key technologies for the monitoring, protection, and control of contemporary wide-area power systems. A variety of topical issues are addressed, including renewable energy sources, smart grids, wide area stabilizing, coordinated voltage regulation and angle oscillation damping—as well as the advantages of phasor measurement units (PMUs) and global positioning system (GPS) time signal. Analysis and synthesis examples, along with case studies, add depth and clarity to all topics. Provides an up-to-date and comprehensive reference for researchers and engineers working on wide-area PSMC Links fundamental concepts of PSMC, advanced metering and control theory/techniques, and practical engineering considerations Covers PSMC problem understanding, design, practical aspects, and topics such as smart grid and coordinated angle oscillation damping and voltage regulation Incorporates the authors’ experiences teaching and researching in international locales including Japan, Singapore, Malaysia, and Australia Power System Monitoring and Control is ideally suited for a graduate course on this topic. It is also a practical reference for researchers and professional engineers working in power system monitoring, dynamic stability and control.